RESEARCH MEMORANDUM PRESSURES AND ASSOCIATED AERODYNAMIC AND LOAD CHARACTERISTICS FOR TWO BODIES OF REVOLUTION AT TRANSONIC SPEEDS By Harold L. Robinson Langley Aeronautical Laboratory Langley Field, Va. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON March 11, 1954 Declassified January 10, 1957 #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM PRESSURES AND ASSOCIATED AERODYNAMIC AND LOAD CHARACTERISTICS FOR TWO BODIES OF REVOLUTION AT TRANSONIC SPEEDS By Harold L. Robinson #### SUMMARY Analysis of the results obtained from a transonic wind-tunnel investigation of two bodies of revolution having the same nose shape, one incorporating a cylindrical afterbody and the other incorporating a curved afterbody, indicated that the pressures over the forward portions of the bodies were the same, whereas, the induced velocities over the rearward portions of the curved body were greater than those over the cylindrical body. However, the cross-section normal loads were greater over the rearward portions of the cylindrical body. Variation of the aerodynamic characteristics with Mach number was rather small for both bodies. The cylindrical body exhibits better stability characteristics than the curved body. The theory of NACA Rep. 1048 regarding the aerodynamic characteristics of the bodies is in fair agreement with the results of this paper. #### INTRODUCTION A detailed study of the pressures and resulting forces for a body of revolution, designated "curved body" in this report, at transonic speeds has been presented in reference 1. The present tests were undertaken in order to provide aerodynamic load data for a body of revolution having an ogive nose and cylindrical afterbody and to compare the aerodynamic characteristics of this body with the body of reference 1 at transonic speeds. The body used in the present test is designated "cylindrical body" herein. A comparison of various theoretical aerodynamic parameters with experimental values is included. The tests reported herein were made for a Mach number range from 0.6 to 1.13 and an angle-of-attack range from 0° to 20°. The Reynolds number 2 NACA RM 153128a range corresponding to the Mach number range varied from 3.3 \times 10 6 to 3.9 \times 10 6 per foot of length. #### SYMBOLS | A_p | plan-form area of body | |--|---| | $c_{M_{\overline{F}'}}$ | pitching-moment coefficient around the nose, based on maximum body cross-sectional area and body length | | $\mathtt{c}_{\mathtt{N}_{\mathbf{F}}}$ | normal-force coefficient, based on maximum body cross-
sectional area | | $\dot{\mathbf{c}}_{\mathbf{d_c}}$ | section drag coefficient of an infinite cylinder | | e _n | transverse section normal-force coefficient, $\frac{N_t}{qD \ d(x)}$ | | c _{nn} | meridian load coefficient, $\frac{N_n}{qLR_{max} d(\theta)}$ | | D | diameter of body at any station | | L | length of body | | М | Mach number | | N_n | elemental force on meridian body section of width R d(θ) (force vector is normal to body axis and makes an angle θ with vertical plane of symmetry) | | N_{t} | elemental force on transverse body section of length d(x) (force vector is normal to horizontal plane of symmetry) | | P | pressure coefficient | | Q, | volume of body | | q | dynamic pressure | | R | radius of body at any station | | Sb | base area of body | | x | distance from nose of model, positive rearward | |-----------------|---| | x^{m} | moment center | | x_p | centroid of body plan-form area | | x _{ep} | center-of-pressure location | | у | distance from vertical plane of symmetry | | α | angle of attack | | η | ratio of the drag coefficient of a finite cylinder to the section drag coefficient of an infinite cylinder at $\alpha=90^{\circ}$ | | θ | meridian station, 0° at top | | Subscripts: | | | max | maximum value | | L | lower surface | | U | upper surface | #### APPARATUS AND METHODS #### Tunnel All the data discussed herein were obtained from tests conducted in the Langley 8-foot transonic tunnel. At present, this tunnel has a dodecagonal slotted test section and is capable of continuously variable operation through the speed range up to a Mach number of 1.14. A test section used previously in this tunnel did not incorporate slots, but had a closed throat. All the data for the cylindrical body and most of the data for the curved body were obtained from tests in the slotted test section. A small portion of the data for the curved body was obtained from tests in the closed-throat test section. Tunnel-wall-interference corrections were not applied to the data obtained from tests in the slotted test section because choking and blockage effects are negligible, especially for the small ratio of model to tunnel size of the present tests. Effects of wall-reflected disturbances have been reduced by offsetting the model from the tunnel center line. #### Bodies A drawing of the two bodies is presented in figure 1. The cylindrical body has the same dimensions as body D of reference 2. The curved body is the same body as that used in references 1 and 3 and is similar to, but slightly longer than, body A of reference 2. Both the curved and cylindrical bodies have the same dimensions forward of the 20-inch body station. Each of the models was instrumented with six rows of orifices spaced along meridians of the body. Each row contained 20 or more orifices. The relative size of the stings employed to support the model in the tunnel is indicated in figure 1. #### Measurements Pressure. The pressures existing on the surface of the cylindrical body were measured by connecting the orifices to a multitubed manometer. In order to determine the forces on the model, these pressures were integrated as discussed in the section of this report entitled "Presentation of Results." The pressure data and associated aerodynamic parameters for the curved body were obtained from references 1 and 3. The repeatability of the pressure data presented herein as affected by the pressure measurements, angle of attack, orifice size and location, and other factors may be judged from figure 2. The largest errors occur near the nose where they are as large as $\Delta P = \pm 0.015$. The accuracy is much better over the remainder of the body. The average error, as determined from the data presented in figure 2, is $\Delta P = \pm 0.005$. Angle of attack.— The angle of attack for the cylindrical body was measured by an electrical strain-gage pendulum device mounted internally near the base of the support sting. Sting and model deflections occurring ahead of this point, due to forces and moments acting on the model, were determined from static tests. These corrections were applied to the angles of attack, although the maximum deflections occurring during the investigation were approximately 0.1°. The angles of attack were also corrected for the approximately 0.1° upflow existing in the langley 8-foot transonic tunnel. The absolute accuracy of the angle-of-attack measurements is estimated to be within 0.1°. #### PRESENTATION OF RESULTS #### Pressure Coefficients All the pressures measured for the cylindrical body are presented in table 1. The longitudinal distribution of pressure coefficients for the cylindrical body at 0° angle of attack is presented in figure 3. Also shown in this figure is the pressure distribution for the curved body from references 1 and 3. The longitudinal distribution of pressure coefficient at the other angles of attack are presented in figure 4 at three Mach numbers (approximately 0.8, 1.00, and 1.13). #### Normal Force and Pitching Moment A comparison of the normal-force and pitching-moment coefficients for the two bodies is presented in figures 5 and 6, respectively. All the data for the curved body were obtained from reference 1. In order to compare the pitching-moment characteristics of the two bodies, the moment coefficients were taken about the nose of the bodies. The integral equation used to compute the normal-force coefficients for the cylindrical body was $$C_{N_F} = -\frac{8L}{D_{max}} \int_0^{0.5} \cos \theta \left[\int_0^1 P \frac{D}{D_{max}} d\left(\frac{x}{L}\right) \right] d\left(\frac{\theta}{2\pi}\right)$$ and that used to compute the pitching-moment coefficient was $$c_{M_{\overline{F}}} = \frac{8L}{D_{\max}} \int_{0}^{0.5} \cos \theta \left[\int_{0}^{1} P \frac{D}{D_{\max}} \left(\frac{x}{L} \right) d \left(\frac{x}{L} \right) \right] d \left(\frac{\theta}{2\pi} \right)$$ The coefficients presented at $\alpha=20^{\rm O}$ could have been lowered as much as 25 percent of the value shown by changing the fairings of the graphical integrations. However, the data presented for the cylindrical body agree with the strain-gage data presented in reference 2. The fairing choice does not exist at $\alpha \leq 8^{\rm O}$ but this margin increases with angle of attack as the angle is increased from $8^{\rm O}$. The theoretical values of normal-force and pitching-moment coefficient shown in figures 5 and 6 were computed by the method described in reference 4. The equations for these coefficients may be written as follows: $$C_{NF} = \frac{8S_b}{\pi D_{max}^2} \alpha + 4\eta c_{d_c} \frac{A_p}{\pi D_{max}^2} \alpha^2$$ $$C_{M_F} = \frac{8}{\pi D_{max}^2} \left(\frac{Q}{L} - S_b\right) \alpha - 4\eta c_{d_c} \frac{A_p}{\pi D_{max}^2} \left(\frac{x_p}{L}\right) \alpha^2$$ The values of η and c_{d_c} used in the calculations for the cylindrical body were 0.7 and 1.2 and were chosen from reference 5 and references 6 and 7, respectively. The plan-form area A_p , the body volume Q, and the location of the centroid of
the body plan-form area x_p were determined from graphical integrations of suitable geometric parameters. #### Center of Pressure A comparison of the center-of-pressure locations for the two bodies is presented in figure 7. The data for the cylindrical body were computed from the normal-force and pitching-moment coefficients of figures 5 and 6. The center-of-pressure data for the curved body were obtained from reference 1. #### Detailed Aerodynamic Loads The meridian normal-load distribution is presented for three Mach numbers (0.80, 1.00, and 1.13) through the angle-of-attack range in figure 8. This coefficient \mathbf{c}_{nn} is defined in such a manner that the load perpendicular to the fuselage center line on a stringer section $\mathrm{Rd}(\theta)$ wide is $\mathbf{c}_{nn}\mathrm{qLR}_{max}\mathrm{d}(\theta)$. Accordingly, \mathbf{c}_{nn} is computed from the graphical integration along a body meridian as follows: $$c_{nn} = -\int_{0}^{1} \frac{D}{D_{max}} P d\left(\frac{x}{L}\right)$$ The longitudinal distribution of body cross-section normal loads at M = 1.00 is presented in figure 9. The pressure data were computed by a graphical integration $$c_n = \int_0^1 (P_L - P_U) d(\frac{y}{R})$$ The theoretical values of $c_n \, \frac{D}{D_{max}}$ were computed by the method of reference 4. The equation for a body of revolution may be written as follows: $$c_n = \pi \left(\frac{dD}{dx} \right) \alpha + \eta c_{dc} \alpha^2$$ #### DISCUSSION OF RESULTS #### Pressure Distribution The pressures over the nose of both bodies, forward of the 20-inch station, are very similar to each other through the range investigated (figs. 3 and 4). Some of the differences observed near the tip of the nose are due to slight differences in the body shape at the apex. In general, the pressures over the rearward portions of the curved body are lower than those over the rearward portions of the cylindrical body. The typically characteristic rearward movement of the shock location with Mach number increases may be observed in figure 3. At M = 0.99 the shock is located at approximately the 20-inch body station of the cylindrical body, whereas at M = 1.03 the shock has moved to the 37-inch body station. The compressions shown for the cylindrical body in figure 3 at M=1.08 and 1.10 at approximately the 30- and 34-inch stations, respectively, are probably due to the bow wave reflected from the tunnel wall and would not be evidenced in free flight. The expansions seen at the rear of the cylindrical body are caused by the air turning around the corner. #### Normal-Force Characteristics As shown in figure 5, the cylindrical body develops greater normal force at a given angle of attack and Mach number than the curved body. The change in normal-force coefficient with Mach number is insignificant at the lower angles of attack, but there is a small increase in normal-force coefficient with Mach number at the higher angles of attack. The prediction of the normal-force coefficients by the method of reference 4 is rather accurate at the lower angles of attack. In general, the measured values fall well below the theoretical values at the higher angles of attack. As mentioned previously, alternative fairings permissible for the integrations would result in even lower values for the measured data. The cross-flow Mach number is less than 0.4 at the highest 8 NACA RM 153128a stream Mach number and at an angle of attack of 20° . Accordingly, the values of c_{d_c} are constant. Therefore, the theory does not predict the variation of normal force with Mach number shown by the measurements. #### Pitching-Moment and Center-of-Pressure Characteristics Examination of the pitching-moment data (fig. 6) indicates that the curved body exhibits either neutral or slightly unstable characteristics for the center of gravity at the nose or unstable characteristics for more rearward locations of the center of gravity. The cylindrical body exhibited more stable characteristics inasmuch as the center of pressure is located behind the 12-inch station for all conditions. It is also noted that the variation of the center-of-pressure location with Mach number is irregular and small (fig. 7). The agreement of the measured pitching-moment coefficient with the theory is similar to that found for the normal-force coefficients. In general, when the normal-force coefficients are overpredicted, the negative pitching-moment coefficients are also overpredicted. Examination of the equations for $C_{\rm N_F}$ and $C_{\rm M_F}$, given in the section entitled "Presentation of Results," indicates that the probable cause for the disagreement noted between the measured and predicted coefficients is associated with the values selected for η and $c_{\rm d_C}$. Had lower values of $c_{\rm d_C}$ and η been used the agreement would have been better. #### Detailed Load Characteristics The maximum meridian load is developed at approximately the 105° meridian (fig. 8). It is observed that the loads do not vary appreciably with Mach number. Examination of figure 9 indicates that although the cross-section normal loads over the forward portions of both bodies are similar, the loads over the rear portion of the cylindrical body are greater than those for the curved body. This is the reason that the pitching-moment characteristics of the cylindrical body are more stable than those for the curved body. The differences observed between the normal-force and pitching-moment characteristics for the two bodies are not caused by the added length of the cylindrical body. Comparisons of the measured and theoretical values of cross-section normal-load coefficient indicate that the theory is in fair agreement with the measured values at angles of attack below 12°. The theoretical values show the same agreement at the forward and rearward portions of the cylindrical body. It is concluded that the errors between theory NACA RM 1531,28a 9 and measurement for the cylindrical body at the higher angles of attack are due to the inadequacy of available data for selecting η and $c_{d_{\bf C}}.$ The disagreement between the theory and the measurements at the rearward end of the curved body may be due to sting interference. It should be noted that, at angles of attack above $12^{\rm O}$, integration of the curves of figure 9 does not give as large a value for $C_{\rm NF}$ as those plotted in figure 5. The data presented for the cylindrical body in figure 9 have been faired consistently with the data of reference 1, whereas the data of figure 5 agree with the strain-gage data of reference 2. #### CONCLUSIONS Analysis of the results obtained from a transonic wind-tunnel investigation of two bodies of revolution, one incorporating a cylindrical afterbody, the other incorporating a curved afterbody, indicates: - 1. The pressures over the nose of both bodies are very similar although higher induced velocities exist over the rearward portions of the curved body; however, the cross-section normal-force coefficient is greater over the rearward portions of the cylindrical body. - 2. At a given Mach number and angle of attack, the normal-force coefficient for the cylindrical body is greater than that for the curved body. - 3. The center-of-pressure location was more rearward for the cylindrical body than for the curved body. Consequently, the cylindrical body exhibited more desirable stability characteristics. - 4. The variation of normal-force and pitching-moment coefficients with Mach number is rather small, especially at the lower angles of attack. - 5. The maximum meridian load for the cylindrical body occurs at approximately the 105° meridian. - 6. The theoretical normal-force and pitching-moment characteristics of both bodies are in fair agreement with the results of this investigation. Iangley Aeronautical Iaboratory, National Advisory Committee for Aeronautics, Iangley Field, Va., December 9, 1953. #### REFERENCES - 1. Estabrooks, Bruce B.: An Analysis of the Pressure Distribution Measured on a Body of Revolution at Transonic Speeds in the Slotted Test Section of the Langley 8-Foot Transonic Tunnel. NACA RM L52D2la, 1952. - 2. Loving, Donald L., and Wornom, Dewey E.: Transonic Wind-Tunnel Investigation of the Interference Between a 45° Sweptback Wing and a Systematic Series of Four Bodies. NACA RM 152JO1, 1952. - 3. Loving, Donald L., and Williams, Claude V.: Basic Pressure Measurements on a Fuselage and a 45° Sweptback Wing-Fuselage Combination at Transonic Speeds in the Slotted Test Section of the Langley 8-Foot High-Speed Tunnel. NACA RM L51F05, 1951. - 4. Allen, H. Julian, and Perkins, Edward W.: A Study of Effects of Viscosity on Flow Over Slender Inclined Bodies of Revolution. NACA Rep. 1048, 1951. (Supersedes NACA TN 2044.) - 5. Fluid Motion Panel of the Aeronautical Research Committee and Others: Modern Developments in Fluid Dynamics. Vol. I, S. Goldstein, ed., The Clarendon Press (Oxford), 1938, pp. 425, 439. - 6. Lindsey, W. F.: Drag of Cylinders of Simple Shapes. NACA Rep. 619, 1938. - 7. Stack, John: Compressibility Effects in Aeronautical Engineering. NACA ACR, Aug. 1941. TABLE I PRESSURE DATA, CYLINDRICAL BODY (a) M = 0.60 | · | | | | | | | -, | Pressur | e coeff | icients | at row | - | | | | | | | |-------------------------|-------------------|------------|------------|-------------------|----------------------|--------------|-------------------|----------------|---------------------|-------------|-------------------|--------------|-------------------|------------|------------|-------------------|------------|----------| | ×, in. | 0 = 0° | θ = 45° | 0 = 75° | 0 = 105° | 0 = 135 ⁰ | 0 = 180° | 9= 0° | 0 = 45° | θ = 75 ⁰ | 0 = 105° | θ = 135° | θ = 180° | 0 = 0° | 0 = 45° | θ = 75° | 8 = 105° | θ = 135° | 9 = 180° | | | | | α: | = 20° | | | | Lynnya | œ. | = 16° | L | | | | a. | = 12 ⁰ | | | | 0.50 | -0.053 | | | | | | -0.002
035 | | | | | | 0.027 | |
 | | | | 2.50 | 057 | -0.263 | -0.304 | -0.221 | 0.078 | 0.126 | 045 | -0.158 | -0.187 | -0.100 | 0.109 | 0.300 | 031 | -0.085 | -0.094 | -0.023 | 0.113 | 0.235 | | 3.50
4.50
5.50 | 070 | 161 | 342 | 268 | .009 | | 058 | 141 | -,218 | -, 141 | .041. | | 046 | 097 | -,127 | 071 | 054 | | | 6.50 | 055 | 155 | 334 | -,298 | 039 | .155 | 065 | -,141 | 228 | 179 | 007 | -173 | 059 | 106 | 140 | 103 | .012 | .121 | | 8.50
10.50 | 038
038 | 142
138 | 326
308 | 300
304 | 065
085 | .156 | 049
040 | 126
112 | 230
224 | 190
203 | 052
051 | .143 | 045
042 | 103
093 | 146 | 110 | 005
022 | .092 | | 12.50
14.50 | 048 | 130 | 280
252 | 305
308 | 093
106 | .146
.124 | 036 | -,102
-,096 | 209
198 | 202 | 065
079 | .105
.079 | -,034
-,028 | 080 | 139
140 | 121
151 | 032
045 | .065 | | 16.50
17.17 | 047
050 | 118 | 216 | 301 | 115 | .125 | 036
037 | 084 | 176 | 211 | 086 | .077 | 020 | 065 | 129 | | 049 | .044 | | 18.17 | 038 | l | 191 | 294 | 115 | .127 | 037 | 077 | 156 | 205 | 088 | .070 | 016 | 056 | 118 | 124 | 050 | .059 | | 19.17
20.17 | 046 | 099 | 167 | - 283 | 106 | .132 | 027 | 072 | 136 | 194 | 082 | .076 | 005
011
006 | - Oh4 | 104 | 114 | 044 | .048 | | 22.17 | 036
030
026 | 094 | 175 | 272
266
260 | 100
097
096 | .136 | 032
028
024 | 065 | 132 | 181 | 075
075
068 | .080 | 006 | 038 | 098 | 102 | 036 | .053 | | 23.17
24.17
25.17 | 027 | 091 | 149 | 253
256 | 092 | 135 | 022 | 057 | | 168
168 | 065 | .080 | 005 | 034 | 079 | 099 | 028 | .054 | | 26.17 | | -, 088 | | 248 | | .137 | | 055 | | 160 | | .078 | | 031 | | 093 | | :052 | | 27.17
28.17 | 026 | 085 | 119 | 254
248 | | .138 | 019
018 | | 103
078 | 167
167 | 053 | .078 | 009
011 | 032 | | 098
096 | 020 | .054 | | 29.17
30.17 | 034 | 078 | | 251
244 | 084
081 | .140 | 021
018 | 046 | | 162 | 058 | .082 | 012 | 028 | | 098 | 025 | .058 | | 31.17
32.17 | 036
043 | 077 | 102 | 241
241 | 094
095 | .138 | 013
019 | 044 | 068
060 | 155
149 | 054
060 | .080 | 007 | 029 | | 093 | 025 | .056 | | 33.17 | 045 | | | | | | 019
018 | 076 | | 16.7 | | | 010 | | | | 026 | .058 | | 34.17
35.17 | 047
055 | 075 | -,096 | 239 | 092 | .146 | - 018 | | 060 | 143 | 061 | .082 | 007
007
005 | 027 | 055
057 | 091 | 024 | .061 | | 36.17
37.17
38.15 | 060
067
075 | 072 | 095 | 239 | 092 | .108 | 015
024
030 | 037 | 057 | - 147 | 065 | .058 | 007 | 034 | 063 | 104 | 037 | .038 | | 38.40 | - 084 | | | | | | 036 | | | | | | 011 | | | | | | | 38.65
38.90 | 093
118 | | | | | | 046
065 | | | | | | 023
041 | | | | | , | | 39.15 | 181 | -,123 | 128 | . = 8° | 210 | 014 | 131 | 083 | 086 | 187
= 40 | 160 | - 056 | 102 | 072 | 1 | = 0° | 138 | 072 | | 0.50 | 0.075 | I | 1 | . = 0 | Ι | 1 | 0.115 | Γ | <u> </u> | - | | | 0.175 | Τ. | <u>u</u> | | | | | 1.50 | .011 | -0.023 | -0.014 | 0.034 | 0.105 | 0.176 | .040 | 0.023 | 0.042 | 0.059 | 0.091 | 0.114 | .087 | | | | | | | 3.50
4.50 | 010 | | 049 | 012 | .052 | | .007 | | 003 | .014 | .041 | 063 | .033 | | | | | | | 5.50
6.50 | 029 | | 067 | 043 | .013 | .076 | -,022
-,036 | | 029 | 013 | .004 | .031 | 001
016 | | | | | | | 8.50 | 034 | 057 | 073 | 052 | .003 | .056 | 039 | 043 | 039 | 024 | 006 | .012 | 016 | | | | | | | 10.50
12.50 | 033 | - 058 | 072 | 062 | 013 | .034 | 039
038 | 046
042 | 043
041 | 030 | - 012 | 005 | 027
029 | 1 | | | | | | 14.50 | 024 | 037 | 061 | | 028 | .020 | 039 | 045
039 | 047
041 | | - 028 | 017 | 034
028 | | | | | | | 17.17
18.17 | 010 | | 057 | 062 | -,027 | .019 | 031
026 | 032 | 037 | - 034 | 022 | -,010 | 029
025 | | | | | | | 19.17 | .005 | 014 | 045 | 055 | 022 | .027 | 014
015 | 050 | 026 | 027 | 016 | .001 | 016
016 | | | | | | | 21.17 | .010 | | 048 | 049 | 015 | .038 | 011 | 014 | 031 | 021 | 008 | .008 | 014 | 1 | | | | | | 23.17 | .018 | -,003 | 035 | | 007 | .039 | 004 | 007 | 019 | 013 | 004 | .010 | 004 | | | | | | | 25.17 | .019 | | 026 | 037 | 003 | | 003 | | | 011 | 001. | | 003 | | | | | | | 26.17 | .023 | 001 | | 030
035 | .004 | .039 | 001 | - 005 | 015 | 006 | .001 | .010 | 001 | | | | | | | 28.17 | . 024 | | | - 034 | | -043 | 001
001 | | | 008 | | .012 | 001 | | | | | | | 30.17 | .024 | | | 030 | .006 | .044 | .000 | | | 008 | .002
.005 | .014 | .001 | | | | | | | 32.17 | .023 | 1 | | -,026 | .004 | .045 | 001 | | | 006 | .004 | .011 | .001 | | | | | | | 34.17 | .027 | .008 | 002 | 024 | .005 | .047 | .001 | 001 | 005 | 005 | .004 | .014 | 002 | 1 | | | | | | 36.17
37.17 | .030 | .009 | 003 | 024 | .007 | .050 | .002 | 005 | 007 | 008 | .003 | -014 | 002 | | | | | | | 38.15 | .022 | .003 | 009 | 032 | 001 | .028 | - 006 | 013 | 016 | -,018 | 009 | 004 | 012 | } | | | | | | 38.65 | .010 | | | | | | 014 | | | | | | 023 | | | | | | | 38.90
39.15 | 005 | | 049 | 092 | - 087 | 064 | 028
054 | | - 066 | -,085 | 087 | 085 | 036
065 | | | | | | | L | 1 | 1 | 1 | | L | l | 11 | .L | 1 | | <u> </u> | 1 | 11 | 1 | _,, | · | | | ## TABLE I.- Continued PRESSURE DATA, CYLINDRICAL BODY (b) M = 0.80 | | <u> </u> | | | | * | | | Pressu | e coefi | icients | of row | | | | | | | | |---|--|--|---------------------------------|---|--|--------------------------------------|--|---------------------------------|---------------------------------|---|--|--------------------------------------|---|---------------------------------|---------------------------------|--|---------------------------------|--------------------------------------| | x, in. | 0 = 0° | 0 = 45° | 0 = 75° | 0 = 105° | 0 = 135° | 0 = 180° | 0 = 0° | 0 = 45° | θ = 75° | 9 = 105 ⁰ | 0 ≈ 135° | 0 = 180° | θ = 0° | 0 = 450 | e = 75° | 0 = 105° | θ = 135° | 9 = 180° | | | | L | α = | = 20 ⁰ | L | 1 | | | a. = | 16° | | | | . | Щ | = 12 ⁰ | | | | 0.50
1.50
2.50 | -0.002
038
053 | -0.238 | | -0.205 | 0.101 | 0.394 | 0.024
020
035 | -0.127 | -0.173 | -0.084 | 0.126 | 0.321 | 0.053
011
021 | -0.073 | -0.085 | -0.014 | 0.126 | 0.247 | | 3.50
4.50
5.50
6.50 | 056
069
071
079 | 157
156 | 339 | 262 | 033 | .252 | 044
056
057
066 | 128 | 212
231 | 136 | 003 | 186 | 026
042
048
059 | 087 | 116
143 | 063 | .060 | | | 8.50
10.50
12.50
14.50
16.50
17.17
18.17 | 057
045
047
060
056
059 | 149
148
139
133
124
111 | 330
306
267
238
198 | 305
312
313
317
308 | 063
085
094
109
117 | .212
.188
.166
.135
.134 | 049
042
038
043
036
039 | 120
113
099
089
089 | 230
223
203
191
163 | 198
209
210
218
213 | 033
053
066
083
088 | .151
.127
.112
.081
.081 | 048
042
033
031
020
020
017 | 100
093
080
076
066 | 148
150
143
143
129 | 113
122
126
137
134
128 | 009
025
035
050
053 | .09½
.078
.06¼
.041
.041 | | 19.17
20.17
21.17
22.17
23.17
24.17
25.17 | 046
055
044
036
031
025
027 | 102 | 144
153
142
129 | 284
270
263
257
253
254 | 109
098
096
094
085
089 | .152 | 026
035
026
025
022
020
024 | -, 063
-, 062
-, 053 | 113
121
110
095 | 190
183
171
167
161
163 | 080
071
070
067
059
060 | .085 | 004
012
005
004
004
002
006 | 042 | 100
107
093
087 | 117
110
100
099
095
096 | 043
037
035
032
026 | .046 | | 26.17
27.17
28.17
29.17
30.17
31.17
32.17 | 022
024
029
029
028
034 | 090
089
082
081 | 110
096
094
093 | 245
249
245
251
239
236
237 | 076
085
079
089 | .136
.137
.142
.138 | 016
020
019
018
014
018 | 052
047
045
041 | 082
064
054
049 | 157
157
157
157
149
145 | 051
053
049
054 | .091 | 006
008
011
006
006 | 030
029
026 | | 090
092
093
094
088
089 | 019
024
021
026 | .055
-058
-060
-059 | | 33.17
34.17
35.17
36.17
37.17
38.15
38.40 | 035
035
041
049
057
063 | 077 | 091
092
093 | 236
236
245 | 094 | .139
.145
.115 | 016
015
016
016
021
025
029 | 036 | 045
045
051 | 140 | 054
047
063 | .097 | 008
003
005
002
005
007
012 | 025 | 050
054
059 | 089
090
105 | 028 | .059 | | 38.65
38.90
39.15 | 075
100
175 | | 127 | 268 | 217 | 027 | 041
061
130 | 090 | Щ | 191 | 171 | 067 | 020
039
104 | 080 | | 173 | 156 | 094 | | | | 1 | a. : | ≈ 8° | | 1 | | T | α. | = 4° | Γ | | | · · · · · | œ. | = 0° | · · · · · · | | | 0.50
1.50
2.50
3.50
4.50
5.50
6.50 | 0.094
.018
003
010
028
036 | -0.018 | -0.010
044
075 | 1 | 0.116 | 0.184 | 0.142
.056
.027
.015
005
019
035 | 0.036
002
03h | .003 | 0.068 | .009
0.099 | .068 | 0.198
.104
.062
.041
.021
.003 | | | | | | | 8.50
10.50
12.50
14.50
16.50
17.17
18.17 | 046
045
037
035
024
022 | 065
055
055
045 | 085
079
083
072 | | 003
018
024
036
036
034 | .055
.058
.050
.009
.012 |
036
040
038
041
030
030
026 | 041
046
041
046
039 | 042
048
042 | 027
035
036
046
042 | 008
018
022
031
029
 | .009
.002
004
021
015 | 016
026
026
035
030
028
027 | | | | | | | 19.17
20.17
21.17
22.17
23.17
24.17
25.17 | -,002
-,004
.003
.008
.012
.014 | 019 | 050
056
041
038 | 039 | 025
016
014
011
006
006 | .034 | 015
014
009
003
.000
.001 | 018 | 025
031
018
015
014 | 028
021
015
011
010
009 | 020
012
010
005
004
001 | .002 | 013
013
009
005
001
.000 | | | | | | | 26.17
27.17
28.17
29.17
30.17
31.17
32.17 | .018
.019
.018
.019 | 003 | | 033
035
036
035
033
028
028 | .002 | .037
.040
.044 | .001
.003
.001
.004
.003 | 003
004
001
001 | 014 | 008
012
010
011
009
008
007 | .002 | .011 | .002
.002
.002
.005
.005 | | | | | | | 35.17
34.17
35.17
36.17
37.17
38.15 | .020
.022
.024
.020 | .003 | 009 | 025 | .005 | .045 | .003
.004
.004
.004
001 | 003 | ~.007
019 | 008 | .000 | .013 | .004
.005
.005
.005
.000 | | | | | | | 38.40
38.65
38.90
39.15 | .013
.006
009 | | 060 | 108 | 108 | 086 | 011
020
028
058 | 051 | 074 | - 099 | 105 | 105 | 014
024
040
068 | | | | | | ## TABLE I.- Continued PRESSURE DATA, CYLINDRICAL BODY (c) M = 0.85 | | | | | | | | · | Pressur | e coeff | icients | of row | | | | | · · · · · · · · · · · · · · · · · · · | | | |-------------------------|-------------------|-------------------|----------------|-------------------------|----------------------|----------|-------------------------|-------------------|-------------------|----------------------|------------|--------------|-------------------|------------|------------|---------------------------------------|------------|----------| | x, in. | θ = 0° | 9 = 45° | θ = 75° | θ = 105 ⁰ | 0 = 135 ⁰ | θ = 180° | 0 = 0° | | | θ = 105 ⁰ | 0 = 135° | 0 = 180° | 0 = 0° | 0 = 45° | θ = 75° | θ = 105° | 0 = 135° | 9 = 180° | | <u> </u> | | | | 20° | | 1 | | | α. = | | | | | | <u> </u> | = 12 ⁰ | l | | | 0.50 | 0.003 | | | | | | 0.035 | | | | | | 0.062 | | | | | | | 1.50
2.50 | 041
054 | -0.229 | -0.295 | -0.199 | 0.109 | 0.402 | - 014 | -0.123 | -0.171 | -0.079 | 0.133 | 0.328 | 006
017 | -0.071 | -0.084 | -0.010 | 0.128 | 0.252 | | 3.50
4.50 | 060
074 | 158 | 341 | 260 | 027 | | 041
054 | 128 | 212 | 132 | 057 | | 023 | 088 | 116 | 062 | .063 | | | 6.50 | 078
089 | 160 | - 349 | 292 | 031 | .252 | 058
067 | 133 | 234 | 180 | .000 | .188 | 050 | 108 | 147 | 097 | .016 | .124 | | 8.50 | 066 | 156 | 337 | -,311 | 062 | .213 | 050
045 | 123 | 233 | 199 | 035
053 | .150
.125 | 049
045 | 103
096 | 155
157 | 117 | 013 | .096 | | 10.50
12.50
14.50 | 054
054
069 | 155
145
141 | 309
268 | 317
318 | 098 | .166 | - 049
- 039
- 044 | 115
105
102 | 226
208
195 | 209
212
222 | 068
086 | .110 | 034 | 082 | 147 | 132 | 040 | .061 | | 16.50
17.17 | 067 | 129 | 235
196 | 324
312 | 119 | .132 | 039
041 | 091 | 165 | - 217 | 090 | .079 | 022 | 069 | | | 058 | 037 | | 18.17 | 070 | 116 | - 169 | 303 | 124 | .121 | - 042 | 079 | 144 | 209 | 094 | .072 | 021 | 058 | 120 | 135 | 061 | .032 | | 19.17
20.17 | 055
065 | 107 | 141 | 286 | 110 | .130 | 026
038 | 066 | 113 | 191 | 083 | .083 | 006
014 | 043 | - 099 | -, 122 | 048 | ·044 | | 21.17 | 051
044 | 101 | - 151
- 139 | 271 | 101 | .136 | 030 | 060 | 122 | 179
170 | 072
069 | .091 | 006
005 | 040 | 108 | | 040
037 | .052 | | 25.17
24.17 | 039
032 | 093 | 128 | 259
254 | 097
087 | 137 | 024
019 | 054 | 094 | 168
164 | 066
059 | .091 | 004 | 035 | 087 | 100 | 035
028 | .052 | | 25.17 | 033 | | | 254 | 090 | | 022 | | | 163 | 060 | | 007 | | 073 | 099 | - 030 | | | 26.17
27.17 | 028 | 091 | -,111 | 245
250 | 082 | .137 | 017 | 052 | 083 | 154
155 | 051 | .090 | 007 | 033 | | 092 | 023 | .053 | | 28.17 | 029
035 | 091 | 099 | 249
251 | | .138 | 020 | 048 | 063 | 155
157 | | .091 | 009
012 | 032 | | 097
098 | | .055 | | 30.17 | 033
031 | 086 | 095 | 243
239 | 085
082 | .142 | 017
013 | 044 | 056 | 152
147 | 054
048 | -095 | 008
006 | 029 | | - 094 | 028 | .057 | | 32.17 | 039 | 086 | 093 | 241 | 092 | .140 | - 018 | 042 | 050 | 146 | 055 | .093 | 011 | 028 | | 092 | 027 | .057 | | 33.17
34.17 | 039
040 | 082 | 093 | 238 | 095 | .140 | 017
013 | 038 | 047 | 142 | 056 | .092 | 009
006 | 027 | | 092 | 032 | .056 | | 35.17
36.17 | 042
043 | - 083 | 092 | 240 | 087 | .148 | 015
015 | 039 | 048 | 141 | 048 | .098 | 007
005 | 031 | 054 | 092 | 027 | .061 | | 37.17
38.15 | 051
057 | 090 | 098 | 252 | 107 | .116 | 020 | 047 | 057 | 150 | 064 | .068 | 007
011 | 041 | 065 | -,109 | 043 | .034 | | 38.40 | 063 | | | | | | 027 | | | | | | 013 | | | | | | | 38.65
38.90 | 075
096 | -,139 | -,131 | 275 | 231 | 035 | 059
059
130 | 095 | 092 | 200 | 182 | 077 | 022
041
109 | 085 | 108 | 180 | 167 | 106 | | 39.15 | 173 | 199 | | 275
= 8 ⁰ | 291 | 0)) | 150 | | a. = | | 102 | | | 00) | | = 0° | -,10, | -1100 | | 0.50 | 0.103 | | | | | T | 0.153 | | | | | | 0.209 | 1 | | | | | | 1.50
2.50 | .024 | -0.014 | -0.006 | 0.044 | 0.120 | 0.187 | .066 | 0.041 | 0.056 | 0,073 | 0.105 | 0.130 | .112 | | | | | | | 3.50
4.50 | 007
025 | 038 | 042 | 009 | | | .021 | .000 | 005 | .028 | .049 | .073 | .047
.025 | | | | | | | 5.50
6.50 | 057
049 | 066 | 075 | 042 | .010 | .072 | 015
033 | 033 | 027 | 007 | .013 | .031 | .006
010 | | | | | | | 8.50 | 047 | 069 | 084 | 061 | 005 | .053 | 036 | 042 | 039 | 025 | 009 | .01.0 | 015 | | | | | | | 10.50
12.50 | 046
038 | 068
060 | 082 | 073 | 020 | .035 | 041 | 046 | 043 | 035 | 017 | 003 | 025
026 | | | | | | | 14.50
16.50 | 038
024 | 059
048 | | 083 | 041 | .006 | 041 | 047 | | 045 | 051 | 022 | 035 | | | | | | | 17.17 | 022 | 037 | 066 | 076 | 039 | .009 | -,030
-,025 | 031 | 036 | 037 | 028 | 015 | 028
025 | | | | | | | 19.17 | 002 | 022 | 049 | 060 | 028 | .023 | 013
011 | 015 | 023 | 026 | 018 | 001 | 014
013 | | | | | | | 21.17 | .003 | 015 | 056 | 051 | 016
013 | .053 | 008 | 011 | 032 | 017 | 009 | .010 | - 008 | | | | | | | 23.17 | .013 | 009 | 039 | | 011 | .034 | .002 | 006 | 013 | 010 | 002 | .012 | 002 | | | | | | | 25.17 | .013 | | 030 | | -,006 | | .003 | | | 008 | .001 | | .002 | | | | | | | 26.17 | .017 | 006 | | 035
034 | .000 | .036 | | 003 | 012 | 007
009 | .004 | .011 | .003 | 1 | | | | | | 28.17
29.17 | .016 | 005 | | 035 | | .040 | 005 | 002 | | 006 | | .014 | .004 | | | | | | | 30.17
31.17 | .018
.018 | 001 | | 034 | .000 | Oh)t | .006 | .001 | | 006 | .003 | .018 | .006
.005 | | | | | | | 32.17 | .016 | .000 | | 029 | .002 | .046 | .005 | 001 | | 003 | .005 | .016 | .004 | | | | | | | 33.17
34.17 | .017 | .003 | 008 | 029 | .002 | .046 | .006 | .000 | 003 | 004 | .003 | .016 | .004
.007 | | | | | | | 35.17
36.17 | .017 | .003 | -,010 | 029 | .005 | .051 | .004
.004 | 005 | 006 | | .004 | .018 | .004 | | | | | | | 37.17
38.15 | .015 | 006 | 019 | 1 | 007 | .029 | 007 | 015 | | | 012 | 004 | 011 | | | | | | | 38.40
38.65 | .010 | | | | | | 011 | | | | | | 015
027 | | | | | | | 38.90
39.15 | 016 | 043 | 067 | 114 | 116 | 095 | 050 | 053 | 077 | 103 | 110 | 110 | - 044 | | | | | | | フソ・ユラ | 0/1 | 043 | 007 | 114 | 116 | 095 | 058 | 1053 | 077 | 105 | 110 | L 110 | J 072 | I | | | | | TABLE I. - Continued PRESSURE DATA, CYLINDRICAL BODY (a) M = 0.90 | | | | | | | · | | Pressu | re coeff | icients | of row - | | | | | | | · · · · · · | |-------------------------|-------------------|------------|---------------------|-----------------|---------------|--------------|-------------------|------------|---------------------|------------|------------|----------------|-------------------|----------------|------------|------------|----------------|--------------| | x, in. | 0 = 0° | 0 = 45° | 9 = 75 ⁰ | 0 = 105° | 0 = 135° | 0 = 180° | 0 = 0° | 0=450 | θ = 75 ⁰ | θ = 105° | 0 = 135° | 0 = 180° | 0 = 0° | 0 = 45° | 0 = 75° | 0 = 105° | θ = 135° | 0 = 180° | | | | <u> </u> | | 50 ₀ | | | | 1 | α.= | 16° | | | | | | 12° | <u> </u> | | | 0.50 | 0.019 | | | | | | 0.047 | | | | | | 0.076 | | | | | | | 1.50
2.50 | 051 | -0.218 | -0.288 | -0.186 | 0.120 | 0.407 | 007
028 | -0.115 | -0.165 | -0.068 | 0.141 | 0.334 | 013 | -0.063 | -0.076 | -0.002 | 0.136 | 0.259 | | 3.50
4.50 | 058
074 | 158 | 340 | 253 | .036 | | 059
055 | 126 | SIO | 129 | .061 | | 018 | 085 | 113 | 056 | .067 | | | 5.50
6.50 | 081 | 164 | 355 | 294 | 030 | .255 | 060
070 | 136 | 236 | 185 | 002 | .187 | 050
063 | - 108 | 147 | 097 | .016 | .128 | | 8.50 | 069 | 162 | 342 | 316 | 064 | .214 | 055 | 126 | 239 | 204 | 034 | .150 | 052 | 106 | 157 | 120 | 013 | .095 | | 10.50
12.50 | 059
060 | 162
153 | 314 | 325 | - 086 | .185
.164 | 049
042 | 120
108 | 230 | 215 | 059 | 1.06 | 048 | 100
085 | 158
149 | 130 | 032 | .073
.058 | | 14.50
16.50 | 074
071 | 149
136 | 236
195 | 329 | 121
129 | .127
.125 | 049 | 107 | -,198
-,169 | 230 | 091
097 | .072 | 038 | - 085
- 073 | 151
136 | 147
142 | 058
062 | .033 | | 17.17
18.17 | 073
073 | 123 | 169 | - 310 | 134 | .116 | 045
044 | - 083 | 144 | -,214 | 100 | .066 | 025 | 061 | 121 | 135 | 062 | .028 | | 19.17 | 059
067 | 110 | 136 | 286 | 116 | .129 | 028
042 | 068 | 111 | 196 | 085 | .080 | 007
016 | 045 | 100 | 121 | 050 | .044 | | 21.17 | 055 | 103 | 145 | 264
262 | 099 | .133 | 034 | 062 | 120 | 183 | 076 | .087 | 008 | 038 |
109 | 111 | 040
037 | .053 | | 23.17 | 040 | 095 | 123 | 260 | 097 | .158 | 026 | 056 | 094 | 168 | 070
061 | .089 | 004 | 035 | 085 | 101 | - 035
- 028 | .053 | | 25.17 | 035
035 | | | 255
253 | 086
088 | | - 024 | | | 164 | 063 | | 007 | | - 070 | - 097 | 029 | | | 26.17
27.17 | -,028 | 095 | 110 | 247
247 | 082 | .136 | 019 | 053 | 082 | 159
158 | 054 | .088 | 007 | 033 | | 090 | ~.022 | .052 | | 28.17 | - 030 | 093 | - 099 | 242 | | .138 | 021 | 050 | - 065 | 159
161 | | .090 | 009 | 032 | | 095
098 | | .055 | | 30.17
31.17 | 030 | 088 | 097 | 242 | 084 | .142 | 019
015 | 047 | 056 | 153 | 058
051 | .093 | 007
008 | 028 | | 093 | - 028
- 024 | .058 | | 32.17 | 038 | 088 | 095 | 238 | 088 | .140 | 019 | -,046 | 053 | 148 | 056 | .092 | 011 | 029 | | 089 | 028 | •057 | | 33.17
34.17 | 039
034 | 084 | - 095 | 240 | 095 | .158 | 019
016 | 040 | 049 | 145 | 058 | .092 | 009
006 | 028 | 050 | 090 | 029 | -057 | | 35.17
36.17 | 043
045 | 086 | 095 | 242 | 088 | .146 | 015
014 | 042 | 050 | 145 | 052 | .097 | 007
006 | 031 | -, 054 | 090 | 026 | .063 | | 37.17
38.15 | 049
053 | 097 | -,106 | 255 | 129 | .116 | 022
024 | 050 | 060 | 157 | 067 | .068 | 010
013 | - 043 | 068 | 110 | 043 | .035 | | 38.40 | 058 | | | ~ | | | 029 | | | | | | 017 | | | | | | | 38.65
38.90
39.15 | 069
090
162 | 145 | -, 136 | 286 | 266 | 040 | 038
055
126 | 102 | ~, 097 | 213 | 200 | 083 | 025
040
111 | 091 | 111 | 193 | 180 | 111 | | 79.17 | 102 | | | = 8º | -,200 | 1 -1010 | -1120 | -1202 | | 4º | 1200 | -1009 | | 1 | 1 | = 00 | 1 -1200 | | | 0.50 | 0.115 | | | T | | | 0.166 | T | | | | | 0,551 | | | | | | | 1.50
2.50 | .032 | -0.006 | 0.001 | 0.050 | 0,126 | 0.194 | .073 | 0.048 | 0.064 | 0.079 | 0.109 | 0.136 | .120 | | | | | | | 3.50
4.50 | 004
023 | ~.035 | 039 | 003 | .062 | | .024 | .004 | .010 | .027 | .051 | .076 | .051 | 1 | | | | | | 5.50
6.50 | 036
052 | 068 | 076 | 040 | .011 | .072 | 016
036 | 035 | 028 | 012 | .012 | .031 | .007
012 | | | | | | | 8.50 | 050 | - 069 | 087 | 059 | 005 | .052 | 039 | 043 | 040 | 030 | 010 | .007 | 015 | ļ | | | | | | 10.50
12.50 | 049
041 | 071
060 | 084 | 070
074 | 024
029 | .033 | 040 | 048
043 | - 044 | 058
058 | 021 | 002 | 028
028 | | | | | | | 14.50
16.50 | 031 | 061
051 | 091
079 | 087
081 | 043 | .007 | 046
035 | 049
041 | 054
045 | 051
045 | 036
033 | - 026
- 018 | - 040
- 033 | | | | | | | 17.17
18.17 | 026
021 | 038 | 069 | 077 | 041 | .005 | 053
028 | 052 | 037 | 040 | 030 | 018 | 031 | | | | | | | 19.17 | ~.006
~.009 | 021 | 051 | 062 | 029 | .020 | 016
013 | 015 | 024 | 027 | 019 | -,002 | 015
014 | | | | | | | 21.17 | .000 | 017 | 060 | 053 | 019 | .050 | 009 | 011 | 033 | 019 | 010 | .011 | 010 | | | | | | | 23.17 | .010 | 012 | 040 | | 015 | .033 | .001 | 004 | 013 | 010 | - 004 | .013 | .002 | | | | | | | 25.17 | .011 | | 031 | 040 | 008 | | .002 | | | 008 | .000 | | .002 | | | | | | | 26.17
27.17 | .015 | 008 | | 035
036 | 002 | 032 | .005 | 002 | 014 | 006 | .003 | .010 | .003 | | | | | | | 28.17
29.17 | .013 | - 007 | | - 037 | | .036 | 003 | 001 | | 007 | | .013 | .004 | 1 | | | | | | 30.17
31.17 | .015
.015 | 004 | | - 034 | ~.003
.000 | .040 | .005 | .002 | | - 007 | .001 | .016 | .007 | ļ | | | | | | 32.17 | .011 | 002 | | 051 | 003 | .041 | .002 | .001 | | 004 | .003 | .014 | .003 | , | | | | | | 33.17
34.17 | .013 | .002 | -,013 | 029 | 003 | .041 | .003 | .001 | 003 | 006 | .005 | .015 | .005 | | | | | | | 35.17
36.17 | .015
.017 | 000 | | - 029 | .002 | .047 | .003 | 003 | 007 | 009 | .003 | .017 | .002 | | | | | | | 37.17
38.15 | .012 | 010 | | 043 | 012 | .023 | 001
010 | 018 | | 026 | 014 | 006 | 002
015 | | | | | | | 38.40 | .005 | | | | | | 015 | | | | | | 021 | | | | | | | 38.65
38.90 | 002 | | | | | | 021
035 | | | | | | 033
049 | | | | | | | 39.15 | 078 | 050 | 076 | 127 | 132 | 109 | 062 | 057 | 082 | 112 | 122 | 119 | 079 | <u> </u> | | | | | TABLE I.- Continued PRESSURE DATA, CYLINDRICAL BODY (e) M = 0.95 | | | | | | | | | Pressure | coeffi | cients o | of row - | *** ********** | | | | | | · · · · · · · · · · · · · · · · · · · | |----------------|--------------------|---------------------|---------------------|----------------------|---------------------------------------|----------------------|--------------------|----------------|------------|------------|----------------------|----------------|---------------|------------|------------|----------------------|----------------------|---------------------------------------| | x, in. | θ = 0 ^O | θ = 45 ⁰ | θ = 75 ⁰ | 0 = 105 ⁰ | θ = 135 ⁰ | θ = 180 ⁰ | θ = 0 ⁰ | 0 = 45° | θ = 75° | 0 = 105° | θ = 135 ⁰ | 8 = 180° | θ = 00 | 0 = 45° | θ = 75° | θ = 105 ⁰ | θ = 135 ⁰ | θ = 180° | | | | | α | 20° | · · · · · · · · · · · · · · · · · · · | | | | a. = | : 16° | | | | | c. · | 120 | | - | | 0.50 | 0.041 | | | | | | 0.062 | | | | | | 0.094 | | | | | | | 1.50
2.50 | 021 | -0.200 | -0.278 | -0.170 | 0.134 | 0.421 | 022 | -0.107 | -0.153 | -0.057 | 0.151 | 0.342 | 006 | -0.056 | -0.066 | 0.007 | 0.146 | 0.266 | | 3.50
4.50 | 052
069 | 155 | 331 | - 244 | .046 | | 038 | 123 | 207 | 119 | .067 | | 012
038 | 081 | 108 | 050 | .073 | | | 5.50
6.50 | 080
097 | 170 | 359 | 294 | 024 | -257 | 065 | -,140 | 240 | 184 | .000 | .187 | 052
068 | 115 | 152 | 096 | .018 | .128 | | | | | | | | | 1 | | | | | | | | 1 1 | | | | | 8.50
10.50 | 079
066 | 169
168 | 350
317 | 316
341 | 065
096 | .213 | 065
061 | 134
127 | 245
238 | 208 | 037
065 | .148 | 059
056 | - 112 | 163
165 | - 121
- 137 | 016
037 | .093 | | 12.50
14.50 | 062 | 160
156 | 266
238 | 345
357 | 108
126 | .157 | - 053 | -,116
-,117 | 215 | 226 | 080 | .098 | 044
046 | 092
093 | 154 | 159
157 | 048 | .054 | | 16.50
17.17 | 072· | 142 | 194 | 342 | 134 | .119 | 053
055 | 102 | 173 | 233 | 106 | .066 | 032
030 | 080 | 143 | 149 | 069 | .026 | | 18.17 | 076 | 127 | 166 | 326 | 139 | .108 | 052 | -,088 | 147 | 223 | 108 | .058 | 027 | 068 | 127 | - 143 | 070 | .023 | | 19.17 | 061 | | | | 2 | | 035 | | | | | | 010 | | | | | | | 20.17 | 068 | 113 | - 134 | 299
269 | -,119
-,108 | .123 | 053
041 | 071 | 111 | 201 | 090 | .075 | 020 | 047 | 101
112 | 124 | 055 | .040 | | 22.17 | 046 | 107 | 136 | 263
263 | 104 | .130 | 033 | -, 064 | 104
091 | 169 | 078
072 | .085 | 006
006 | 042 | 092
085 | 101 | - 038 | .049 | | 24.17 | 038 | 098 | 123 | 258 | 099 | .134 | 028 | 057 | | 169 | 063 | .088 | 004 | 036 | | 097 | 030 | . 053 | | 25.17 | 037 | | | 259 | 096 | | 031 | | | -,164 | 066 | | 009 | | 070 | 098 | 030 | | | 26.17
27.17 | 029 | 096 | 117 | 248
258 | 084 | .131 | 025 | 055 | 085 | 158
153 | 054 | .086 | 010 | 034 | | 092 | 022 | .051 | | 28.17 | 031 | 096 | 103 | 259 | | .133 | 026 | 053 | 067 | 161 | | .089 | 012 | 034 | | 095 | | . 055 | | 29.17
30.17 | 035
033 | 091 | | 256
246 | 091 | .136 | 029 | 050 | | 161 | 057 | .090 | 014
010 | 030 | | 097 | 028 | .056 | | 31.17
32.17 | 031
038 | 092 | 100
101 | 246
246 | 084
097 | .134 | 021 | 050 | 059
057 | 151 | 054 | .088 | 010 | 032 | | 091 | 026 | .056 | | 33.17 | 040 | | | | | | 025 | | | | | | 013 | | | | | | | 34.17 | 038 | 090 | 099 | 246 | 100 | .137 | 023 | 043 | 055 | 147 | 061 | .089 | 010 | 031 | 052 | 092 | 031 | .055 | | 35.17
36.17 | 044
045 | 092 | 102 | 252 | 093 | .142 | 017 | 047 | 058 | 148 | 053 | .095 | 014 | 034 | 056 | 094 | 029 | .063 | | 37.17
38.15 | 051
057 | 104 | 118 | 267 | 112 | .112 | 023 | 058 | 072 | 163 | 069 | .069 | 016 | 052 | 073 | 112 | 043 | .039 | | 38.40 | 059 | 104 | | | | | 028 | | | | | | 022 | | | | | : | | 38.65 | 064 | | | | | | 035 | | | | | | 030 | | | | | | | 38.90
39.15 | 080 | 159 | 146 | 362 | 251 | 029 | 048 | 115 | 114 | - 267 | -,202 | 063 | 043 | 102 | 130 | 227 | 178 | 092 | | | | | α. | = 8° | I | | | | a. = | - 4° | | | | | G. : | = 0° | | | | 0.50 | 0.131 | | | | | | 0.180 | | | | | T | 0.235 | | | | | | | 1.50
2.50 | .042 | | 0.008 | 0.056 | 0.375 | 0.201 | .081 | 0.055 | 0.071 | 0,086 | 0.117 | 0.142 | .131 | | | | | | | 3.50 | .002 | 0.000 | | 0.056 | 0.135 | 0.201 | .025 | | | | | | .057 | | | | | | | 4.50
5.50 | 021 | 032 | 036 | 001 | .067 | | 018 | .006 | .011 | .030 | .055 | .078 | .034 | | | | | | | 6.50 | 058 | 072 | 079 | O44 | .010 | .071 | 041 | -∢037 | 052 | 014 | .011 | .029 | 013 | | | | | | | 8.50 | 056 | 077 | 092 | 065 | 010 | .048 | 045 | 048 | | 035 | 014 | .006 | 019 | | | | | | | 10.50
12.50 | 059
050 | -,080
-,069 | 098
092 | 079
080 | 029
034 | .027
.019 | 054
047 | 057
050 | 055 | 039 | - 026
- 028 | 007 | 035
034 | | | | | | | 14.50
16.50 | 055 | 074
061 | 101 | 096
090 | 056 | - 009
- 002 | 056
046 | 061
050 | - 054 | 059 | - 049
- 042 | 036 | 047
039 | | | | | | | 17.17
18.17 | 035 | 047 | 079 | 085 | | 004 | 044
038 | 058 | -,046 | 047 | 038 | 025 | 038
034 | | | | | | | | 029 | 047 | 019 | 005 | 051 | 004 | | 050 | ,040 | 047 | | 02) | | | | | | | | 19.17 | 011 | 028 | 057 | - 066 | 034 | .015 | 022 | 017 | 026 | 029 | 023 | 005 | 020 | | | | | | | 21.17 | 005 | 020 | 065
048 | 055
048 | 023 | .027 | 014 | 012 | 036
016 | 021 | 011 | .007 | 013 | | | | | | | 23.17 | .007 | | 044 | 045 | 016 | | 001 | | 014 | 012 | 004 | | .000 | | | | | | | 24.17
25.17 | .009 | 016 | 036 | 044 | 012 | .030 | 001 | 004 | 013 | 011 | 002 | .011 | .002 | | | | | | | 26.17 | | 015 | | 058 | | .030 | | 004 | | 006 | | .010 | | | | | | | | 27.17
28.17 | 800.
800. | 014 | | 037
040 | 006 | -033 | 001
001 | 004 | 017 | 007 | 001 | .013 | .001 | | | | | | | 29.17 | .006 | | | 042 | | | ~.001 | | | 008 | | | .002 | | | | | | | 30.17
31.17
| .011 | 010 | | 038
035 | 008 | .036 | 002 | 001 | | 008
005 | 001 | .014 | .006 | | | | | | | 32.17 | •005 | 010 | | 034 | 006 | .036 | 001 | 004 | | 006 | .002 | .015 | .001 | | | | | | | 33.17 | .005 | | | | | | .000 | | | | | | .002 | | | | | | | 34.17
35.17 | .010 | 008 | 019 | 035 | 007 | .038 | .002 | 003 | 007 | 008 | .001 | .013 | .004
.003. | | | | | | | 36.17
37.17 | .006 | 010 | 022 | 036 | 004 | .043 | 001 | 006 | 010 | 012 | .001 | .015 | .001
006 | | | | | | | 38.15 | 005 | 024 | 037 | 052 | 017 | .022 | 017 | - 026 | 031 | 030 | 016 | 006 | 020 | | | | | | | 38,40 | 007 | | | | | | 020 | | | | | | 027 | | | | | | | 38.65
38.90 | 016
030 | | | | | | 030
044 | | | | | | 040
061 | | | | | | | 39.15 | - 090 | 066 | 099 | -,161 | -,150 | 105 | 071 | 068 | 102 | | 141 | 136 | 093 | | | | | | TABLE I.- Continued PRESSURE DATA, CYLINDRICAL BODY (f) M = 0.98 | I | · | | | | | | | Pressu | e coeff | icients | of row - | | | | ··· | | · | - 1 (- 1 (- 1) | |----------------|--------------|------------|-------------|------------|------------|--------------|------------|-------------|----------------|------------|----------------|--------------|--------------|---------------------|------------|-------------------|---------------|---| | x, in. | θ = 0° | 9 = 45° | 0 = 75° | 9 = 105° | θ = 135° | θ = 180° | 0 = 00 | | | θ = 105° | | 0 = 1.80° | θ = 0° | θ = 45 ⁰ | θ = 75° | θ = 105° | θ = 135° | 9 = 180° | | | | | | 20° | | | | | | 16° | | | | L | α = | : 12 ⁰ | li | L;: | | 0.50 | 0.060 | | | | | | 0.088 | | | | | | 0.111 | [| ļ | | | | | 1.50
2.50 | 009
030 | -0.185 | -0.265 | -0.154 | 0.150 | 0.433 | 003 | -0.095 | -0.140 | -0.039 | 0.167 | 0.356 | .025 | -0.042 | -0.053 | 0.022 | 0.155 | 0.276 | | 3.50
4.50 | 044 | 141 | 319 | 236 | .058 | | 023
043 | 117 | 197 | 111 | .079 | | 003 | 072 | 098 | - 044 | .080 | | | 5.50
6.50 | 078
099 | 169 | 348 | 296 | - 017 | .261 | 053
079 | 147 | 238 | 177 | .006 | .194 | 046
070 | -,115 | 151 | 094 | .018 | .130 | | 8.50 | 080 | 168 | 355 | 329 | 062 | .214 | 060 | 133 | 241 | 209 | 037 | .149 | 065 | 116 | 167 | 125 | 016 | .092 | | 10.50
12.50 | 082 | 184
168 | 339
283 | 342
364 | 095
125 | .180
.149 | 074
042 | 146
120 | 259
226 | 244
247 | 071
093 | .112 | 065
.047 | 116
095 | 178
161 | 149
144 | 047
054 | .061
.049 | | 14.50
16.50 | 105
092 | 172
162 | 240
217 | 356
359 | 137
139 | .113 | 080
057 | 138
120 | - 221
- 195 | 242
262 | 106
130 | .061
.049 | 063
043 | 108 | 179
152 | 174
162 | 080
080 | .013
.014 | | 17.17
18.17 | 092
079 | 123 | 165 | 348 | -,163 | .091 | 047
048 | 090 | 130 | 226 | 127 | .046 | 039
031 | 071 | 132 | 156 | 083 | .011 | | 19.17 | 060 | | | | | | 026 | | | | | | 008 | | | | | | | 20.17 | 064 | 121 | 142
136 | 288
303 | 112
111 | .124 | 061
040 | 072 | 098
119 | 200
186 | - 103
- 071 | .072 | 021 | 047 | 100 | 127
106 | 056
043 | .038 | | 22.17 | 035
041 | 107 | 132 | 246
283 | 108
091 | .129 | 026
027 | 063 | - 094
- 084 | 166
179 | 075
067 | . 084 | 004 | 040 | 087
081 | 099
098 | 043
036 | .050 | | 24.17 | 046 | 098 | | 250
266 | 093 | .136 | 022 | 056 | | 172
167 | 060
062 | .090 | - 004 | 035 | 067 | 097
097 | 030 | . 054 | | 25.17 | 040 | - 097 | | 250 | 2.090 | .132 | 924 | 054 | | 161 | F.002 | .087 | | 033 | | 095 | | .051 | | 27.17 | 039
034 | 097 | 117 | 265
262 | 083 | .134 | 018 | 054 | 084
064 | 152 | 055 | .088 | 011 | 034 | | 083 | 023 | .053 | | 29.17 | 040 | | | 261
252 | 091 | | 024
019 | 049 | | 169 | 057 | .090 | 015 | 031 | | 099 | 030 | .056 | | 30.17 | - 039 | 094 | 103 | 248 | 094 | .137 | 011
018 | 051 | - 058
- 057 | 153 | 053 | .089 | 011 | 052 | | 093 | 028 | .054 | | 32.17 | 036 | 095 | 104 | 251 | 094 | .135 | 022 | 071 | -,001 | 1)1 | 000 | .009 | 015 | 0)2 | | | | | | 33.17
34.17 | 037 | - 093 | 102 | 246 | 100 | .135 | 017 | 045 | 054 | 148 | 059 | .089 | 013 | 032 | 050 | 094 | 032 | .055 | | 35.17
36.17 | 051 | 096 | 106 | 253 | 092 | .142 | 020 | 050 | 057 | 150 | - 053 | .097 | - 013 | 036 | 057 | 096 | 029 | .061 | | 37.17
38.15 | 059 | 114 | 125 | 267 | 111 | .117 | 041 | 067 | 075 | -,161 | - 064 | .074 | - 031 | 057 | 075 | 111 | - 040 | .040 | | 38.40
38.65 | 067
074 | | | | , | | 041 | | | | | | 034 | | | | | | | 38.90
39.15 | 085 | 181 | 190 | 372 | 232 | 005 | - 057 | 140 | 155 | 274 | 177 | 033 | 052 | 126 | 169 | 229 | 157 | 066 | | 220.00 | 0.220 | •==== | | = 8º | 1.2,2 | 1.002 | 1177 | | | 14° | | | | | | = 00 | 1 | 1 | | 0.50 | 0.149 | | | | | | 0.199 | | | | | | 0,253 | | | | . | : | | 1.50
2.50 | .054 | 0.012 | 0.021 | 0.069 | 0.144 | 0.210 | .099 | 0.065 | 0.081 | 0.096 | 0.126 | 0.153 | .145
.094 | | | | | • ; | | 3.50
4.50 | .010
014 | 022 | 027 | 007 | .073 | | .039 | .014 | .018 | .037 | .062 | .087 | .065
.042 | | | | | | | 5.50
6.50 | 033
059 | 072 | 078 | 038 | .010 | .073 | 009
037 | 036 | 030 | 013 | .011 | .031 | .014
011 | | | | | | | 8.50 | 060 | 078 | | 070 | 009 | .048 | 045 | 049 | 048 | 033 | 015 | .001 | 020 | | | | | | | 10.50
12.50 | 063 | 084
069 | 105 | 090 | 037 | .021 | 052
045 | 060
049 | 059
051 | 048 | 033 | 014 | 037
033 | | | | | | | 14.50
16.50 | 069
049 | 087
070 | 117 | 115 | 071 | 022 | 067
049 | 073
056 | 079
061 | 076
060 | 062
048 | 052 | 063
047 | | | | | | | 17.17
18.17 | 045
035 | ~.052 | | 096 | 062 | 014 | 046
037 | 044 | 051 | - 053 | 044 | 032 | 047
040 | 1 | | | | | | 19.17 | 015 | | | | | | 018 | | | | | | 020 | | | | | | | 20.17 | 015
002 | 026 | 056
067 | 070
058 | 037
024 | .014 | 016 | 018 | 028 | 030 | 026
014 | 006 | 018
012 | | | | | | | 22.17 | .003 | 020 | 044 | 050
048 | 020 | .026 | .000 | 011 | 016
013 | 013 | 010 | .008 | 002
.002 | 1 | | | | | | 24.17 | .009 | 016 | 034 | 047
046 | 015
014 | .029 | .004 | 004 | 012 | 008 | 002 | .011 | .002 | | | | | | | 26.17 | | 014 | | 041 | | .028 | | 003 | | 005 | | .008 | | | | | | | | 27.17
28.17 | .006 | 014 | | 038
043 | 008 | .031 | .004 | 003 | 016 | 009
010 | .001 | .011 | .003 | | | | | | | 29.18 | .003
.008 | 011 | | 045
045 | 012 | .032 | .003 | .001 | | 011 | 002 | .011 | .002
.007 | | | | | | | 31.17
32.17 | .004 | 013 | | 040
040 | 009
011 | .031 | .013 | -,002 | | 007
007 | .000 | .011 | .002 | | | | | | | 33-17 | .001 | | | | | | .003 | | | | | | .003 | 1 | | | | | | 34.17
35.17 | .000 | 012 | | | 012 | .051 | .003 | 002 | 006 | 008 | 001 | .011 | .004 | | | | | | | 36.17
37.17 | 008 | 016 | | | 010 | -037 | 001
009 | 009 | 012 | | 002 | .014 | .000
007 | | | | | | | 38.15
38.40 | 022
025 | 037 | 047 | 058 | 021 | .017 | 024
050 | 032 | 032 | -,029 | 016 | 006 | 024
033 | 1 | | | | | | 38.65 | 035 | | | | | | 042 | | ļ | | | | 047 | 1 | | | | | | 38.90
39.15 | 050
105 | 095 | 140 | 179 | 145 | 095 | 056
085 | 085 | -,123 | 152 | 146 | 132 | 074
117 | | | | | | TABLE I.- Continued PRESSURE DATA, CYLINDRICAL BODY (g) M = 1.00 | | | | | | | | , | Pressu | re coeff | 'icients | of row - | | ···· | | | -, -, , | | | |-------------------------|--------------------|------------|------------|----------------|------------|--------------|-------------------|---------------------------------------|------------|--------------|-------------------|-------------|-------------------|---------|------------|--------------------|------------|-------------| | x, in. | θ = 0 ^α | θ = 45° | θ = 75° | θ =105° | θ = 135° | θ = 180° | 0 = 0° | θ = 45° | 0 = 75° | 0 = 105° | 0 = 135° | 0 = 180° | 0 = 0° | 0 = 45° | 0 = 75° | 9 = 105° | 0 = 135° | θ = 180° | | | | | α = | = 20° | | | | · · · · · · · · · · · · · · · · · · · | α= | 16° | | | | | α= | - 12 ⁰ | | | | 0.50 | 0.078 | | | | | | 0.106 | | | | | | 0.129 | | | | | | | 1.50
2.50 | 018 | -0.125 | -0.259 | -0,138 | 0.164 | 0.442 | .011 | -0.078 | -0.127 | -0.026 | 0.180 | 0.369 | .040 | -0.050 | -0.041 | 0.034 | 0.170 | 0.289 | | 3.50
4.50 | 034
046 | 131 | 314 | 219 | .073 | | 009
026
047 | 097 | 174 | 100 | .093 | | 018 | 059 | 088 | 028 | .093 | | | 5.50
6.50 | 067
091 | 163 | 352 | 279 | 003 | .270 | 066 | -, 132 | 227 | 168 | .015 | .203 | 054
063 | 107 | 141 | 080 | .026 | .138 | | 8.50
10.50 | 078
082 | 168
184 | 353
338 | 317 | 052
093 | .219
.183 | 059 | 131
142 | 241
253 | 203
233 | 030
069 | .156 | 056
070 | 107 | 158
177 | 119
146 | 011 | .097 | | 12.50 | 080 | 181 | 293 | 350
365 | 117 | .150 | 066 | 136 | 239 | 251 | 009
095
125 | .071 | 061 | 108 | 173 | 158
182 | 063 | .043 | | 14.50
16.50
17.17 | 115
112
122 | 176 | 225 | 378
372 | 146
160 | .099 | 081 | 149
141 | 212 | 272
273 | 138 | .050 | 075
064
067 | 115 | 176 | 184 | 097 | .007 | | 18.17 | 113 | 170 | 205 | 370 | 168 | •080 | 091 | 136 | 194 | 273 | 152 | .024 | 065 | 108 | 169 | 189 | 109 | 012 | | 19.17
20.17 | 105 | 138 | -,164 | 347 | 159 | .088 | 067
052 | 111 | 147 | 250 | 138 | .038 | 042 | -,072 | 134 | 165 | 096 | .000 | | 21.17 | 027 | 078 | 140 | 323 | 149 | .105 | 070 | - 075 | 145 | 220 | 123 | .054 | 001 | 021 | 116 | - 133 | - 079 | | | 23.17
24.17 | 028 | 086 | 086 | 195 | 072 | .161 | .001 | 034 | 062 | 179 | 092 | 099 | .019 | 020 | 056 | - 069 | 011 | | | 25.17 | 028 | | | 218 | - 070 | | .001 | | | 126 | 032 | | .007 | | 050 | 077 | 014 | | | 26.17
27.17 | 036 | 086 | 103 | - 235
- 251 | 072 | .148 | 006 | 058 | 061 | 128
131 | 031 | .115 | 004 | 024 | | 076 | 014 | .066 | | 28.17
29.17 | 026 | - 084 | 096 | 244
256 | | .140 | 010 | 047 | 057 | 157
156 | |
.107 | 008 | 030 | | - 100
- 096 | | .061 | | 30.17
31.17 | 033 | 079 | 087 | 239
235 | 087 | .137 | 016 | 044 | 062 | 151 | 053
051 | .097 | 008 | 028 | | 096 | 031
025 | .058 | | 32.17 | 044 | 080 | 085 | ~.232 | 087 | ,136 | - 009 | 048 | 062 | 154 | 058 | .089 | - 015 | 032 | | 093 | 032 | .057 | | 33.17
34.17 | 055
048 | 080 | 086 | 226 | - 090 | .138 | 018 | 047 | 058 | 153 | 065 | .085 | 015
008 | 030 | 049 | 091 | 053 | | | 35.17
36.17 | - 053
- 054 | 082 | 087 | 230 | 080 | .146 | 018 | 048 | 058 | 150 | 054 | .095 | 014
011 | 034 | 054 | 092 | 026 | .063 | | 37.17
38.15 | - 063
- 077 | 103 | 106 | 240 | 091 | .126 | 028 | 067 | 070 | - 155 | 059 | .081 | 018 | 057 | 070 | -,103 | 033 | .048 | | 38.40 | -, 083 | | | | | | 043 | | | | | | 038 | | | | | | | 38.65
38.90 | 095 | | | | | | - 061
- 082 | | | | | | 056
076 | | | | | | | 39.15 | 145 | 214 | 220 | ~.347 | 201 | .018 | 119 | 185 | 195 | 260 | 156 | 009 | 119 | -,171 | 201 | 214 | 135 | 042 | | | | , | ,α. = | = 80 | | | | | α.= | = 4° | | | | | α. : | = 0° | | | | 0.50
1.50 | 0.162
.068 | | | | | | 0.211 | , | | | | | 0.226 | | | | | | | 2.50
3.50 | .032 | 0.022 | 0.033 | 0.082 | 0.153 | 0.221 | .072 | 0.076 | 0.090 | 0.106 | 0.138 | 0.164 | .104 | | | | | | | 4.50
5.50 | 002
024 | 013 | 016 | .016 | .083 | | 003 | .022 | .028 | .046 | .073 | .097 | 053 | | | | | | | 6.50 | 051 | 065 | 072 | 038 | .016 | .078 | 034 | 033 | 027 | 008 | .01.8 | .038 | 006 | | | | | | | 8.50
10.50 | - 050
- 071 | 071
093 | 087
109 | 063
092 | 005
040 | .051
.018 | 038
063 | 041
070 | 042
068 | 027
055 | 009
038 | .009
018 | 014
045 | | | | | | | 12.50
14.50 | 067
079 | 086
100 | 109
127 | 102 | 055
079 | .001
030 | 063 | 068
084 | 069
088 | 060
082 | ~•047
-•069 | 029
057 | 050 | | | | | | | 16.50 | 072
073 | 094 | 120 | 124 | 082 | 031 | 075 | -,080 | -, 084 | 080 | 070 | 053 | 065
070 | | | | | | | 18.17 | 066 | 086 | 118 | 127 | 090 | 040 | 075 | 078 | 086 | -,083 | 074 | 056 | 068 | | | | | | | 19.17
20.17 | 043
028 | 041 | 078 | 100 | 074 | 023 | 057
043 | 045 | 057 | 062 | 059 | 042 | 051 | | | | | | | 21.17
22.17 | .007 | 006 | 062 | 059
037 | 037
008 | .040 | 021 | .004 | 053
001 | 035
. 004 | 051 | .022 | 001 | | | | | | | 23.17
24.17 | .024
.024 | 004 | - 025 | 030 | -,001 | .043 | .020 | .011 | .006 | .013 | .019 | .031 | .021 | 1 | | | | | | 25.17 | .019 | | 024 | 035 | 003 | | •016 | | | .007 | .014 | | .013 | ĺ | | | | | | 26.17
27.17 | .012 | 009 | | 036
031 | 003 | .034 | .006 | .005 | -,012 | .003 | .008 | .020 | .006 | | | | | | | 28.17
29.17 | .008 | 013 | | 043
048 | | .030 | .001 | 003 | | 006 | | .016 | .006 | | | | | | | 30.17
31.17 | .009 | 012 | | 044
042 | 014
011 | .031 | .004
002 | 002 | | 008 | 001 | .013 | .010 | | | | | | | 32.17 | .002 | 013 | | 042 | 014 | .029 | - 002 | 005 | | 007 | .000 | .012 | .002 | | | | | | | 33.17
34.17 | .005 | 011 | 025 | 041 | 014 | .028 | .000 | 003 | 007 | 007 | .001 | .013 | .004 | | | | | | | 35.17
36.17 | .000 | 016 | | 043 | 011 | .035 | - 001 | 007 | 011 | 009 | .001 | .016 | .002 | | | | | | | 37.17
38.15 | 010 | 041 | | 055 | 019 | .020 | 008 | 035 | - 033 | 025 | 010 | .000 | 003 | 1 | | | | | | 38.40 | 035 | | | | | | 057 | | | | | | 029 | | | | | | | 38.65
38.90 | 050
071 | | | | | | 052
078 | | | | | | 046
079 | | | | | | | 39.15 | 124 | 137 | 173 | - 176 | 129 | 078 | 122 | - 125 | 156 | 159 | 139 | 115 | 147 | 1 | | | | | TABLE I.- Continued PRESSURE DATA, CYLINDRICAL BODY (h) M = 1.03 | | | | | | | | | Pressu | re coeff | cients | of row | | | | | | | | |-------------------------|---------------------|------------|---------------------|------------|----------------------|--------------|----------------------|------------|------------|------------------|------------------------|-------------|----------------------|---------|------------|------------|----------------------|--------------| | x, in. | θ = 0° | 0 = 45° | θ = 75 ⁰ | 0 = 105° | θ = 135 ⁰ | 0 = 180° | θ ≈ 0° | 0 = 450 | I | θ = 105° | | 0 = 180° | 8 = 0° | 0 = 45° | θ = 75° | θ = 105° | θ = 135 ⁰ | 8 = 180° | | | | | | = 20° | | | | | | 16° | | | | 1 | | 120 | 135 | | | 0.50 | 0.110 | | | | | | 0.127 | | | | , | | 0.158 | | | | | | | 1.50
2.50 | .041 | -0.090 | -0.218 | -0.103 | 0.197 | 0.467 | 058 | -0.057 | -0.106 | 0.000 | 0.200 | 0.388 | .072 | 0.001 | -0.009 | 0.065 | 0.197 | 0.316 | | 3.50
4.50 | 012 | 095 | 274 | 179 | .110 | | .021 | 063 | 142 | 065 | .119 | | .014 | 025 | 052 | .005 | 122 | | | 5.50
6.50 | 028 | 124 | 305 | 236 | .036 | .302 | 029 | 094 | 186 | 127 | .052 | .233 | - 007 | 070 | 104 | 049 | .055 | .166 | | 8.50
10.50 | 051
057 | 135
155 | 316
308 | 275
314 | 014
057 | .251
.214 | 022 | 093 | 199
214 | 162
194 | .008 | .188 | 029 | 077 | 127
150 | 087
118 | 014 | .124
.095 | | 12.50
14.50 | - 065
- 101 | 160
176 | - 273
- 254 | 335
357 | 085
121 | .176
.127 | 046
081 | 112 | 213
225 | 219
250 | 063
101 | .118 | 044 | 089 | 155 | 138 | 040
074 | .064 | | 16.50
17.17 | 121 | 175 | 226 | 365 | 144 | .113 | 082 | 137 | 209 | 262 | 124 | .055 | 059
068 | 108 | 171 | 176 | 090 | .013 | | 18.17 | 125 | 176 | 217 | 371 | 162 | .086 | 095 | 139 | 197 | - 272 | 142 | 030 | 070 | 110 | 171 | 186 | 105 | 007 | | 19.17
20.17 | 125
116 | 166 | 192 | 371 | 166 | .086 | 088 | 129 | 173 | 267 | 146 | .030 | 057
075 | 096 | 155 | 180 | 106 | 005 | | 21.17 | 107
106 | -,159 | 191
179 | 355
352 | 163 | .083 | 076
071 | 119 | | 252
242 | 138
135 | .033 | 078
045 | 091 | 144 | 162
154 | 094 | .005 | | 23.17
24.17 | - 094 | - 143 | 164 | 313 | 157 | .087 | 078 | 107 | 138 | 231
219 | 13 ⁴
118 | .038 | 043 | 076 | 132 | 155
149 | 087
080 | .01.2 | | 25.17 | 073 | 128 | | 311 | 138 | .099 | 060 | 096 | | 216 | 112 | .049 | 045 | 071 | 105 | 139 | 077 | 014 | | 27.17 | 064 | 120 | 135
125 | 291
278 | 113 | .106 | 060 | 090 | 113 | 198 | 092 | .057 | 035 | 062 | | 122 | 063 | -014 | | 29.17 | 068 | -,112 | 12) | - 278 | 124 | .109 | - 060 | 091 | | 201 | 098 | .057 | 036 | 049 | | 128 | 059 | 054 | | 51.17
32.17 | 064
061 | 102 | 111
107 | 253
252 | 104 | ,112 | 054
038 | 075 | 087 | 180
178 | 085
087 | .060 | .000 | 043 | | 111 | 050
050 | -034 | | 33.17 | 053 | | | | | | 041 | | | | | | 021 | | | | | | | 34.17
35.17 | 053
034 | 090 | 093 | 239 | 107 | .118 | 029
018 | 058 | 069 | 167 | 083 | .067 | 003
.016 | 027 | 044 | | 042 | -044 | | 36.17
37.17 | 043 | 076 | 078 | 222 | 085 | .138 | 013 | 039 | 047 | 143 | 060 | .087 | .037 | .004 | 009 | 055 | 005 | .080 | | 38.15
58.40 | 037
033 | 068 | 073 | 208 | 075 | .134 | 011 | 041 | 046 | 131 | 044 | .091 | .018 | 008 | 018 | 050 | -014 | -093 | | 38.65
38.90 | 033
030 | | | | | | 025 | | | | | | 003 | | | | | | | 39.15 | 056 | 135 | 136 | L | 159 | .052 | 057 | -,121 | | 219 | 122 | .022 | 062 | 113 | 140 | 161 | - 085 | .005 | | | | | α | = 8° | 1 | | | | a. | = 4 ⁰ | r—— | | | | α, | = 0° | | | | 0.50
1.50 | .091 | | | | | | 0.236 | | | | | | 0.288
180 | | | | | | | 2.50
3.50
4.50 | .058 | 0.050 | 0.058 | 0.105 | 0.179 | 0.242 | .101 | 0.103 | .060 | 0.133 | 0.162 | .128 | .131 | | | | | | | 5.50
6.50 | .033
.015
014 | 028 | 033 | .052 | .115 | -112 | .057
.036
.008 | .056 | .012 | .079 | .102 | .070 | .059 | | | | | | | 8.50 | 018 | 037 | - 052 | 027 | .029 | .083 | 003 | -,009 | 008 | .005 | .024 | .042 | .019 | | | | | | | 10.50
12.50 | 044 | 065 | 083
094 | 062
085 | - 012
- 037 | .046 | 033
043 | 059
048 | 038
050 | 025 | 007 | .012
009 | 018
038 | 1 | | | | : | | 14.50
16.50 | 070
070 | 090 | 118
117 | 114
119 | - 067
- 078 | 017 | 064 | 071
075 | 075 | 070 | 056
063 | 043 | 064 | | | | | | | 17.17
18.17 | 075
072 | 090 | 120 | 127 | 089 | 040 | 069
071 | 076 | 083 | - 083 | 073 | 058 | 072
072 | | | | | | | 19.17 | 060 | | | | | | 061 | | | | | | 063 | | | | | | | 20.17
21.17
22.17 | 063
057
046 | 074 | 108 | 119 | 086 | 034 | ~.060 | 063 | 074 | 076 | 069 | 050 | 062
060
050 | | | | | - | | 23.17 | - 040
- 033 | - 072 | 099
095 | 103 | 067
071
061 | 020 | 049
042 | 064 | 068
059 | 064 | 054
051 | 057 | 040 | | | | | 1 | | 25.17 | 051 | 059 | -,075 | 095
093 | 062 | 014 | 037 | 049 | 059 | 054
051 | 045
045 | 029 | 041 | | | | | | | 26.17
27.17 | 022 | -,051 | | 080
067 | 047 | 016 | 031 | 036 | 050 | 040 | 031 | 032 | 029 | 1 | | | | | | 28.17
29.17 | 020 | 045 | | 076
076 | | .003 | 028 | 037 | | 040
040 | | 019 | 021 | | | | | | | 30.17
31.17 | 015
015 | 038 | | 072
062 | 044 | .006 | 014
017 | -,023 | | 056 | 031
025 | 013 | 015
020 | | | | | 1 | | 32.17 | 014 | 028 | | 058 | -,034 | .010 | 011 | 017 | | 023 | 020 | 010 | 014 | | | | | | | 33.17
34.17 | 005
.018 | 002 | 013 | 039 | 017 | .022 | 004
.006 | .000 | 005 | 008 | 005 | .006 | 005
.014 | | | | | | | 35.17
36.17 | .030
.040 | .023 | .015 | 002 | .030 | .073 | .017 | .023 | 019 | .021 | .029 | .059 | .050 | | | | | | | 37.17
38.15
38.40 | .038 | .012 | .008 | .000 | .035 | .073 | .036
.025
.017 | .018 | .019 | .027 | .039 | .046 | .053
.037
.026 | | | | | 1 | | 38.65 | .009 | | | | | | .005 | | | | | | .008 | | | | | | | 38.90
39.15 | 010 | 069 | 104 | 119 | 074 | 024 | 017 | - 053 | 087 | 102 | 085 | 067 | 024 | | | | | Ì | | ///-/ | | | 1207 | | 1 | | | رږد. | 1 | 1 | 1 | 1 | - 5 | | | | |] | TABLE I.- Continued PRESSURE DATA, CYLINDRICAL BODY (i) M = 1.08 | | | | , | | | | Dwage | | et at ant | a of ro | · | | | | | | | | |-------------------------
-------------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|---------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|---------|-------------------|-------------------|------------|----------| | x, in. | 0 = 0° | θ = 45° | θ = 75° | θ = 105° | 0 = 135° | e = 180° | θ = 0° | | | 0 = 105° | | 0 = 1.80° | 8 = 0° | 0 = 150 | A = 750 | A = 1050 | 0 = 135° | 9 = 180° | | - | 0-0 | 0-147 | - | = 200 | 0-100 | 3 - 100 | .0-0 | V5 | | 160 | V - 133 | 0 - 100 | 0-0 | 0-42 | | 120 | 0-133 | 0 - 200 | | 0.50 | 0.112 | | | | | | 0.122 | | | | | | 0.124 | | | | | | | 1.50
2.50 | .045 | -0.097 | -0.228 | -0.099 | 0.205 | 0.471 | .046 | -0.069 | -0.104 | 0.000 | 0.202 | 0.384 | .063
.037 | -0.004 | -0.013 | 0.062 | 0.197 | 0.317 | | 3.50
4.50 | 003 | 103 | ~.280 | 174 | .113 | | .020 | 065 | 144 | 066 | .123 | | .049 | 017 | 046 | .009 | .128 | | | 5.50
6.50 | 025
039 | 114 | 303 | 237 | 039 | .303 | 015
035 | 097 | 186 | 124 | .056 | .234 | 023 | 062 | 096 | 043 | .060 | .169 | | 8.50 | 058 | 139 | 316 | 269 | 010 | 253 | 034 | 107 | 225 | 177 | .001 | .184 | 031 | 078 | 126 | 084 | .027 | .128 | | 10.50
12.50
14.50 | - 089
- 071
- 063 | 175
157
156 | 326
270
207 | 318
354
363 | 053
092
114 | .214
.172
.138 | 057
048
054 | 114
108
111 | 212
202
219 | 210
205
248 | 048
053
085 | .137
.127
.089 | 032
045
077 | - 087 | 152
150
178 | 117
141
164 | 047
068 | .063 | | 16.50
17.17 | 072 | 150 | 170 | 322 | 129 | .125 | 044 | 102 | 160 | 248 | 111 | 073 | 032 | 083 | 151 | 165 | 082 | .016 | | 18.17 | - 083 | 139 | 162 | 329 | 130 | .117 | - 051 | 100 | 146 | 229 | -,115 | .047 | 033 | 077 | 132 | 147 | 080 | .023 | | 19.17 | - 087
- 072 | -,122 | 143 | 308 | 120 | .125 | 046 | | 119 | 220 | - 108 | .062 | 016 | 055 | 108 | 144 | 075 | .027 | | 21.17 | 067
041 | 101 | 144 | 294
306 | 112 | .124 | 045
040 | 085 | 123
111 | 205 | 100
094 | .065 | 028 | 043 | 109
085 | 122 | 050 | .057 | | 23.17 | 059
059 | 094 | 109 | 266
255 | 111 | .125 | 058
058 | -,075 | 099 | 182 | 089
071 | .076 | .023 | 007 | - 062 | 093
084 | 034 | 055 | | 25.17 | 065 | | | - 249 | 096 | | 039 | | | 181 | 074 | | .021 | | 031 | 062 | 022 | | | 26.17 | 060 | 104 | 110 | 241
249 | 079 | .131 | .054 | .002 | .001 | 156
062 | .005 | .089 | 013 | 021 | | 059
071 | 001 | .064 | | 28.17
29.17 | 056
049 | 100 | 098 | - 242 | | 135 | 023 | 012 | .019 | 087
140 | | .163 | 025
043 | 041 | | 093
101 | | .083 | | 30.17
31.17 | 010 | 061 | 071 | 205
207 | 053
017 | | 034
068 | 053 | 076 | 157
169 | 046
059 | .119 | 040 | 036 | | 100 | 035 | 050 | | 32.17 | 038 | 068 | 078 | 234 | 052 | .189 | 061 | 076 | -,087. | 184 | 085 | .072 | 015 | 022 | | 074 | -007 | .108 | | 33.17
34.17 | 049 | 087 | 100 | 258 | - 099 | .145 | 068 | 080 | 094 | 168 | 098 | .054 | 011 | 032 | 064 | 114 | 045 | .056 | | 35.17
36.17 | 070
082 | - 109 | 114 | 274 | 111 | .128 | 062 | 088 | 097 | 193 | 093 | .063 | 029
032
045 | 050 | 077 | 126 | 060 | .038 | | 37.17
38.15
38.40 | 092
100
099 | -,126 | 124 | 275 | 126 | .097 | 071 | 096 | 101 | 196 | 101 | .042 | 048 | 071 | 086 | 139 | - 073 | .008 | | 38.65 | 103 | | | | | | 075 | | | | | | - 052 | | | | | | | 38.90
39.15 | 111 | 226 | 252 | 314 | 171 | .060 | 081 | - 204 | -,209 | 243 | -,143 | •007 | 062 | 184 | 189 | 185 | 115 | 023 | | | | | L | = 8° | L | | | l | α.= | ٠ | 1 | | | L | α, | = 0° | | | | 0.50 | 0.152 | | | | | | 0.206 | | | | | | 0.246 | | - | - | | | | 1.50
2.50 | .082 | 0.039 | 0.046 | 0.095 | 0.173 | 0.241 | .082 | 0.088 | 0.100 | 0.114 | 0.149 | 0.177 | .169 | 1 | | | | | | 3.50
4.50 | .051 | .020 | .012 | .051 | .112 | | .081 | .056 | .060 | .077 | .099 | .124 | 090 | | | | | | | 5.50
6.50 | - 017 | 030 | 039 | 009 | ,050 | .108 | .033 | .006 | .013 | .030 | .050 | .067 | .051
.026 | | | | | | | 8.50 | 025 | 043 | 059 | 036 | .018 | •074
Oh7 | 009 | 015 | 015 | .001 | .016
006 | .032 | .012 | | | | | | | 10.50
12.50
14.50 | 040
055
065 | 079 | 106 | 057
094
110 | 006
038 | •047
•024
••020 | - 028
041
054 | 054
050
060 | | 039 | 018 | .005 | 018 | | | | | | | 16.50 | 056 | 073 | | 091 | 071 | - 004 | - 066 | 070 | | 065 | 056 | 039 | 029 | | | | | | | 18.17 | 042 | 065 | 107 | ~.106 | 061 | 004 | 056 | 064 | 068 | 057 | 036 | 016 | 037 | | | | | | | 19.17
20.17 | 024
026 | 056 | 070 | 091 | 065 | 009 | 023 | 026 | 040 | 050 | 053 | 031 | 042
046 | | | | | | | 21.17 | 017 | 031 | 073 | 066 | 047 | .004 | 020 | -,020 | 044
024 | 027 | 031
011 | 00 <u>1</u> | 017
008 | | | | | | | 23.17 | .00 ¹ 4 | 020 | 052 | | 037 | .014 | .001 | 002 | 013 | 013 | 011 | .003 | 001
.002 | | | | | | | 25.17 | .010 | | 035 | 052 | 024 | | .016 | | | 009 | 005 | | .003 | | | | | | | 26.17
27.17 | .035 | 007 | | 039 | 003 | .018 | .041 | .024 | .013 | .008 | .019 | .006 | .031 | 1 | | | | | | 28.17
29.17 | .044
.038 | .019 | | 006 | | .068 | .023
.010 | .016 | | .017 | | .036 | .041 | | | | | | | 30.17
31.17 | .031 | .009 | ł | 006 | .036 | .086 | .019
.014 | .014 | | .028 | .050
.021 | .081 | .061 | | | | | | | 32.17 | 011 | 023 | | 051 | 018 | .051 | •004 | 002 | | 010 | 005 | .009 | 006 | | | | | ĺ | | 33.17
34.17 | 023 | 039 | 054 | 076 | 047 | 003 | 005
012 | 021 | 031 | 037 | 034 | 022 | 021
026 | | | | | | | 35.17
36.17 | - 035
- 035 | - 049 | 063 | 083 | 050 | .000 | 024
028 | - 034 | 039 | 042 | 036 | 021 | 035 | | | | | [| | 37.17
38.15 | 041
048 | 062 | 072 | 089 | 054 | 017 | - 034 | 051 | 052 | 051 | 040 | 032 | 034 | | | | | | | 38.40 | 045 | | | | | | 050 | | | | | | 039 | | | | | | | 38.65
38.90 | 057 | | | | 700 | | 062
088 | 75/ | 207 | 127 | | | 049
072 | | | | | | | 39-15 | 105 | 172 | 176 | 152 | 109 | 058 | 146 | 156 | 156 | 134 | 111 | 091 | 148 | <u></u> | | | | | TABLE I.- Continued PRESSURE DATA, CYLINDRICAL BODY (j) M = 1.10 | | ·
 | | | | | 7 | <u>-</u> | Pressur | e coeff | icients | of row - | | | ···· | | | | | |---|---|---------------------------------|---------------------------------|---|--|--------------------------------------|---|---------------------------------|---------------------------------|---|---|--------------------------------------|---|---------------------------------|--|---|----------------------------------|--------------------------------------| | x, in. | θ = 0° | 0 = 45° | θ = 75° | θ = 105 ⁰ | θ = 135 ⁰ | θ = 180° | 0 = 00 | 0 = 45° | θ = 75° | 0 = 105° | 0 = 135° | θ = 180° | 0 = 0° | 9 = 45° | 6 = 75° | θ = 105 ⁰ | θ = 135 ⁰ | θ = 180° | | | | | α = | : 20 ⁰ | | | | | α = | 16° | Luinean | | | | a. = | 12° | | | | 0.50
1.50
2.50 | 0.097
.038
.006 | -0.092 | -0.227 | -0.089 | 0.215 | 0.476 | 0.119 | -0.068 | -0.098 | 0.001 | 0.205 | 0.390 | 0.117
.045
.010 | -0.023 | -0.031 | 0.045 | 0.175 | 0.290 | | 3.50
4.50
5.50
6.50 | .008
012
038
058 | 097 | 261
310 | 161
227 | .123 | .311 | .024
.008
014
031 | 062
095 | 142
187 | 066 | .125 | .234 | .041
.025
.002
017 | 017
057 | 045 | .006 | .123 | .177 | | 8.50
10.50
12.50
14.50
16.50
17.17
18.17 | 042
074
090
091
093
090
090 | 131
160
172
167
160 | 307
307
289
246
183 | 271
307
332
375
374
314 | .002
048
073
117
139 | .260
.218
.181
.133
.119 | 029
043
053
085
065
068
056 | 094
119
112
140
122 | 201
233
217
221
193 | 161
198
246
245
235
256 | .011
022
077
110
097
110 | .187
.157
.110
.062
.065 | 025
048
027
058
069
054
049 | 069
089
078
096
111 | 118
146
155
158
170
165 | 079
112
131
159
168
 | .027
010
028
071
077 | .129
.096
.074
.035
.021 | | 19.17
20.17
21.17
22.17
23.17
24.17
25.17 | 090
071
089
079
067
069
044 | 138
123
110 | 145
145
138
127 | 315
302
313
267
263
269 | 118
114
116
099
087 | .112 | 049
045
047
048
035
028
038 | 090
083
069 | 125
124
105
087 | 235
210
200
177
171 | 129
114
094
088
069 | .051 | 037
024
032
022
014
016 | - 070
- 063
- 049 | 121
119
104
094
071 | 159
132
120
113
111
111 | 103
082
065
048
041 | .001 | | 26.17
27.17
28.17
29.17
30.17
31.17
32.17 | 029
027
034
047
042
052 | 080
075
077
083 | 093
082
067
071 | 258
258
236
246
219
187
177 | 086

097
081
059 | .132 | 040
039
040
051
008
.033 | 067
071
055
.016 | 087
083
045
095 | 167
168
173
179
181
163
133 | 064
079
074
068 | .076
.080
.074
.074 | 031
.034
.015
.009
.013 | 043
024
005
019 | | 101
095
102
089
089
061
056 | 032
028
027
006 | .040
.052
.052
.052 | | 33.17
34.17
35.17
36.17
37.17
38.15
38.40 | 066
061
028
013
056
059
058 |
065
037
065 | 066
052
080 | 215
179
238 | 059
063 | .164 | .045
.034
006
024
046
057
057 | -005
039
065 | .004
044
077 | 064 | .060 | .202
.139
.070 | 016
019
017
023
018
009
011 | 030 | 042 | 085 | 016 | .080 | | 38.65
38.90
39.15 | 064
075
094 | 181 | - 200 | 290 | 132 | .099 | 062
066
079 | 174 | 188 | 220 | -, 122 | .028 | 019
031
057 | 149 | - | 156 | 074 | .086 | | | | | a | = 8° | | | ļ | | .0. = | = 4º | | | | | α: | = 0 ₀ | | | | 0.50
1.50
2.50
3.50
4.50
5.50
6.50 | 0.154
.066
.013
.045
.038
.012 | .027 | .017 | 0.078 | 0.158 | 0.226 | 0.199
.112
.049
.045
.061
.038
.013 | 0.063 | 0.081 | 0.099 | .098 | 0.161 | 0,255
.156
.092
.114
.083
.046
.022 | | | | | | | 8.50
10.50
12.50
14.50
16.50
17.17
18.17 | 022
040
036
063
053
062
067 | 040
059
051
086
073 | 078
073
114
102 | 065
101 | .020
009
025
045
076 | .077
.046
.029
.013
020 | 005
029
035
049
050
057
068 | 010
034
038
060
056 | 009
033
038
063
066 | .001
024
033
054
074 | .019
010
020
031
061 | .038
.009
002
016
040 | .013
014
022
022
061
071
063 | | | | | | | 19.17
20.17
21.17
22.17
23.17
24.17
25.17 | 057
060
029
012
001
.003 | 067 | 104
099
069
057 | 103
089
082
063
060 | 065
056
048
047
035
029 | .002 | - 066
- 059
- 037
- 024
- 010
- 004
- 004 | 063
031
013 | 070
070
037
026
022 | 063
051
043
025
019
021 | 052
045
035
025
015
015 | 039 | 046
044
041
041
015
.001
001 | | | | | | | 26.17
27.17
28.17
29.17
30.17
31.17
32.17 | .003
.003
001
003
002 | 022 | | 045
031
042
047
051
052
054 | 008

019
020
025 | .024 | 007
006
007
.001
.013 | 008 | 015 | 017
003
008
005
009
013
002 | .000

001
003
007 | .018 | .002
.006
.001
.006
.000 | | | | | | | 35.17
34.17
35.17
36.17
37.17
38.15
38.40 | .059
.067
.049
.032
.007
012 | .016 | .006 | | .047 | .068 | .043
.032
.023
.021
.011
009 | .018 | | .052 | .045 | .063 | .036
.070
.064
.032
.005
014 | | | | | | | 38.65
38.90
39.15 | 028
046
079 | 150 | 146 | 117 | 074 | 028 | 055
058
123 | 133 | 131 | 109 | 085 | 065 | 030
053
130 | | | | | | TABLE I.- Concluded PRESSURE DATA, CYLINDIRCAL BODY (k) M = 1.13 | | (k) M = 1.13 Pressure coefficients of row - |----------------|--|------------|------------|----------------|----------------|--------------|----------------|------------|------------|----------------|----------------|----------|-----------------------|---------------------|--------------|------------|-------------|----------|--| | x, in. | | | | | | | | Pressu | re coeff | icients | of row | _ | Y | | | | | | | | , | 0 = 0° | 0 = 45° | 9 = 75° | 0 = 105° | 9 = 135° | 9 = 180° | 0 = 0° | θ = 45° | 9 = 75° | 9 = 105° | 0 = 135° | θ = 180° | 9 = 0° | 0 = 45° | θ = 75° | 0 = 105° | 0.=.135° | 0 = 180° | | | | α = 20° | | | | | | | a = 16° | | | | | | α = 12 ⁰ | | | | | | | 0.50 | 0.079 | | | | | | 0.078 | | | | | | 0.116 | | | | | | | | 1.50
2.50 | .008 | -0.096 | -0.225 | -0.080 | 0.219 | 0.473 | .008 | -0.081 | -0.104 | 0.002 | 0.209 | 0.383 | .057
.019 | -0.018 | -0.026 | 0.050 | 0.182 | 0.300 | | | 3-50
4-50 | .012 | 085 | ~.250 | 147 | .136 | | .029 | 056 | 133 | 053 | .138 | `~ | .029 | 018 | 040 | .005 | .121 | | | | 5.50
6.50 | 016
041 | 111 | 280 | -,206 | .069 | -324 | 004 | 083 | 174 | - 109 | .077 | .251 | 011 | 053 | 092 | 040 | .069 | .180 | | | 8.50 | 053 | 134 | 308 | 244 | .021 | .274 | 018 | 085 | 194 | 147 | .030 | .200 | 015 | 058 | 109 | 073 | .033 | .138 | | | 10.50
12.50 | 036
070 | 135
154 | 289
248 | 294
332 | 024 | .231
.196 | 034 | 097
097 | 208
188 | 182
196 | 012
040 | .160 | 027
037 | 068 | 126
132 | 099
112 | .002
017 | .109 | | | 14.50 | 099 | 170
156 | 238 | 336 | 106 | .145 | 058 | 122 | 232 | 252
265 | - 063 | .105 | 032 | 078 | 150
146 | 131 | 043 | .051 | | | 17.17 | 092. | | 211 | | 117 | | 081 | | 179 | | | | 050 | | | 168 | | | | | 18.17 | 094 | 146 | 173 | 368 | 136 | .109 | 089 | 122 | 169 | 251 | 132 | .041 | 065 | 095 | 147 | 154 | 089 | .012 | | | 19.17
20.17 | 094
084 | 150 | -,150 | 344 | 147 | 105 | 081
066 | - 115 | 161 | 228 | - 106 | .050 | 060
026 | 077 | 145 | 175 | 090 | .009 | | | 21.17 | 095
093 | 143 | 148 | 308
320 | 147
144 | .087 | 068 | - 102 | 161 | 235
250 | 100
107 | .055 | 025
027 | 069 | 128
112 | 154 | 090
076 | .013 | | | 23.17 | 069
061 | 117 | 126 | 268
261 | 124 | .105 | 050 | 082 | 117 | 219 | 113 | .053 | 019 | 057 | 099 | 130
128 | 075 | .014 | | | 25.17 | 071 | | | 263 | 085 | | 041 | | [| 189 | -, 093 | | 027 | | 080 | 129 | 068 | | | | 26.17
27.17 | 063 | 104 | 113 | 251
253 | 080 | .125 | 029 | 074 | 086 | 175 | 072 | .062 | - 030 | 054 | | 114
107 | 047 | .023 | | | 28.17 | - 058
- 058 | 102 | 111 | 248
263 | | .125 | 036
041 | 071 | 077 | 167
166 | | .068 | 025 | 047 | | 107 | | .037 | | | 30.17 | 063 | 090 | 096 | 250
233 | 087 | .125 | 040 | 063 | 068 | 155 | 057
041 | .088 | 036
061 | 050 | | 102 | 034 | .045 | | | 32.17 | 050
053 | 085 | 093 | 239 | 080 | .139 | 046 | 067 | 072 | 157 | 056 | .094 | 017 | 047 | | 109 | 042 | .051 | | | 33.17 | 043 | | | | | | 041 | | | | | | 039 | | | | | | | | 34.17
35.17 | 043
043 | 074 | 081 | 243 | 100 | .126 | 046
044 | 066 | 082 | 178 | 071 | .076 | 018 | 035 | 060 | 118 | 041 | .052 | | | 36.17
37.17 | 028 | 057 | 058 | 213 | 091 | .127 | 031 | 062 | 082 | 180 | 081 | .073 | .003 | 012 | 033 | 093 | 037 | 059 | | | 38.15
38.40 | 056
056 | 061 | 044 | 175 | 062 | .121 | 035
034 | 063 | 069 | 161 | 082 | .062 | .012 | 015 | 020 | 053 | 038 | .034 | | | 38.65 | 057 | | | | | | 035 | | | | | | .017 | | l | | | | | | 38.90
39.15 | 061
075 | 160 | 149 | 195 | 098 | .102 | 034
037 | - 154 | 160 | 188 | 102 | .037 | - 001
- 026 | 125 | 127 | 114 | 038 | .013 | | | 250.25 | α = 8° | | | | | | α = 40 | | | | | | | <u>-</u> | = 00 | | 1.025 | | | | 0.50 | 0.149 | | | | | | | 0.205 | | | | | | T | | | | | | | 1.50 | 089 | 0.032 | 0.045 | 0.094 | 0.170 | 0.240 | .122 | 0.088 | 0.103 | 0.115 | 0.145 | 0.172 | 0.291
.182
.106 | } | | | | | | | 3.50
4.50 | 034
012 | .012 | .011 | | | | 069 | -042 | .048 | | | | .088 | | | | | | | | 5.50 | .013 | | | .053 | .118 | | 014 | | | .068 | .095 | .122 | .065 | | | | | | | | 6.50 | ~. 003 | 016 | 032 | 002 | .059 | .119 | .016 | •007 | .008 | 024 | .044 | .078 | .046 | 1 | | | | | | | 8.50
10.50 | 013
025 | 031
046 | 049 | 022 | .032 | .088 | 016 | 001
022 | 001 | - 014 | .031 | .050 | .015 | | | | | 1 | | | 12.50
14.50 | 030 | 048
053 | 073 | 063
078 | 019
036 | .034
.009 | - 020 | 025
040 | 029
043 | 025
040 | - 013
- 027 | .005 | 015
027 | | | | | | | | 16.50
17.17 | 045
056 | 074 | - 099 | 088 | 036 | .010 | 037
045 | 047 | 047 | 037 | 020 | 017 | 025
018 | | | | | | | | 18.17 | ~.052 | 069 | 113 | - 117 | 071 | 016 | 046 | 062 | 077 | - 073 | 051 | 020 | 044 | | | | | | | | 19.17
20.17 | 038
049 | | 090 | 108 | 081 | 031 | 037 | 045 | 051 | 056 | 055 | 046 | 056 | | | | | | | | 21.17 | 041
042 | 067 | 087 | 073 | - 062
- 045 | - 008 | 051
046 | | 062 | - 045
- 041 | - 050 | 026 | 044 | | | | | | | | 23.17 | 022 | | 093 | 088 | 050 | | 027 | 057 | 057 | 046 | 033 | | 025 | 1 | | | | | | | 24.17
25.17 | ~.016
~.015 | 043 | 061 | - 091
- 084 | 053 | 003 | 017 | 028 | 047 | 049
039 | 039
040 | 019 | 034
042 | | | | | | | | 26.17 | | 032 | | 060 | | 009 | | - 022 | | 030 | | 026 | | | | | | | | | 27.17
28.17 | 004
001 | 026 | | - 050
- 057 | 030 | .014 | 013
009 | 014 | 024 | 017
019 | 018 | .003 | 007 | | | | | | | | 29.17
30.17 | 002
001 | 024 | | 052
053 | 027 | .013 | 008 | - 009 | | 016
012 | 006 | .009 | 004 | | | | | | | | 31.17
32.17 | 003
012 | 024 | | 047
041 | 018
011 | .032 | - 009
- 013 | 017 | | 014
017 | 006
008 | .008 | .000 | | | | | | | | 33.17 | 017 | | | | | | 017 | | | | | | 002 | | | | | | | | 34.17
35.17 | 019 | 030 | 040 | 047 | 012 | .034 | 013 | 024 | -, 027 | 022 | 004 | .015 | .002 | | | | | | | | 36.17 | 014 | 025 | 043 | 065 | 032 | .021 | 010 | 015 | 014 | 018 | - 010 | .007 | 018 | | | | | 1 | | | 37.17
38.15 | 011 | 025 | 038 | 061 | 040 | 003 | .023 | .015 | .004 | 008 | 011 | 011 | .012 | | | | | | | | 38.40 | 005 | | | | | | -034 | | | | | | .013 | | | | | | | | 38.65
38.90 | 007
011 | | | | | | .029 | | | | | | 009 | | | | | | | | 39.15 | 026 | 079 | 103 | 101 | 067 | -, 024 | 045 | 054 | -: 066 | 061 | 060 | 052 | 081 | <u> </u> | | | | | | Figure 1.- Body details. (Linear dimensions in inches.) Figure 2.- Accuracy of pressure measurements. $\alpha = 0^{\circ}$. Figure 3.- Longitudinal pressure distribution at zero angle of attack. Figure 4.- Longitudinal pressure distribution at six radial stations. (a) $\alpha = 8^{\circ}$. Figure 4.- Continued. (c) $\alpha = 12^{\circ}$. Figure 4.- Continued. (d) $\alpha = 16^{\circ}$. Figure 4.- Continued. (e) $\alpha = 20^{\circ}$. Figure 4.- Concluded. Figure 5.- Comparison of normal-force coefficients. (Flagged symbols represent data from closed-throat tunnel; unflagged symbols represent data from slotted-throat tunnel.) (a) Cylindrical body. (b)
Curved body. Figure 6.- Comparison of pitching-moment coefficients. (Flagged symbols represent data from closed-throat tunnel; unflagged symbols represent data from slotted-throat tunnel.) Figure 7.- Comparison of center-of-pressure locations. Figure 8.- Meridian load coefficient. Cylindrical body. Figure 9.- Comparison of cross-section normal loads, M = 1.00.